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Some background

@ It was noticed in the early days of string theory that in the
limit of infinite string tension o/ — 0, string theory reduces to
Yang-Mills gauge theory coupled to gravity.

[Gervais, Neveu, Scherk, Schwarz et al. 1970s]
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@ It was noticed in the early days of string theory that in the
limit of infinite string tension o/ — 0, string theory reduces to
Yang-Mills gauge theory coupled to gravity.

[Gervais, Neveu, Scherk, Schwarz et al. 1970s]

@ This can be used as a tool to calculate gauge theory
amplitudes; indeed some amplitudes were computed for the
first time this way.

[Bern, Dixon, Dunbar, Mangano, Kosower, Parke, Xu et al. 1988— |
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Some background

@ It was noticed in the early days of string theory that in the
limit of infinite string tension o/ — 0, string theory reduces to
Yang-Mills gauge theory coupled to gravity.

[Gervais, Neveu, Scherk, Schwarz et al. 1970s]

@ This can be used as a tool to calculate gauge theory
amplitudes; indeed some amplitudes were computed for the
first time this way.

[Bern, Dixon, Dunbar, Mangano, Kosower, Parke, Xu et al. 1988— ]

@ String amplitudes have been used to find individual Feynman
graphs to compute e.g. one-loop Yang-Mills renormalization
scattering [pi Vecchia, Lerda, Magnea, Marotta, Russo 19962 and ®3 scalar
scattering at 2-l00ps. [pi Vecchia, Lerda, Magnea, Marotta, Russo 1996b]
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Some background

@ To test our techniques, we use compute the two-loop effective
action for strings in a constant electromagnetic field—this
allows us to identify the individual Feynman diagrams.
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Some background

@ To test our techniques, we use compute the two-loop effective
action for strings in a constant electromagnetic field—this
allows us to identify the individual Feynman diagrams.

@ On the QFT side, we extend calculations done for scalar QED
at 1 loop by Schwinger in the 1950s and at 2 loops in the
1970s to Yang-Mills + scalars.

[Schwinger 1954, Ritus 1977]
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Some background

@ To test our techniques, we use compute the two-loop effective
action for strings in a constant electromagnetic field—this
allows us to identify the individual Feynman diagrams.

@ On the QFT side, we extend calculations done for scalar QED
at 1 loop by Schwinger in the 1950s and at 2 loops in the
1970s to Yang-Mills + scalars.

[Schwinger 1954, Ritus 1977]

@ The 1 loop amplitude for open strings in a magnetic field was
calculated in the mid 1980s.

[Fradkin, Tseytlin 1985; Abouelsacod, Callan, Nappi, Yost 1988 etc]
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The string measure

@ g-loop string vertices can obtained by ‘sewing’ together
. *®3
3-reggeon vertices V € ,%”String.
[Sciuto 1969; Caneschi, Schwimmer, Veneziano 1969; Della Selva, Saito 1970; Di Vecchia, Nakayama,

Petersen, Sciuto 1986]
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The string measure

@ g-loop string vertices can obtained by ‘sewing’ together
. *®3
3—reggeon vertices V € ’%ﬁstring'
[Sciuto 1969; Caneschi, Schwimmer, Veneziano 1969; Della Selva, Saito 1970; Di Vecchia, Nakayama,

Petersen, Sciuto 1986]

@ ‘Sewing’ two legs i, j means acting on the ith Hilbert space
‘%ﬁjﬁilng with the BRST-invariant propagator D(x) ((i vecchia, Frau,
Lerda, Sciuto 1087]) then contracting with the dual of the string

Hilbert space on leg j: #/

string”
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The string measure

@ g-loop string vertices can obtained by ‘sewing’ together
. *®3
3—reggeon vertices V € ’%ﬁstring'
[Sciuto 1969; Caneschi, Schwimmer, Veneziano 1969; Della Selva, Saito 1970; Di Vecchia, Nakayama,

Petersen, Sciuto 1986]

@ ‘Sewing’ two legs i, j means acting on the ith Hilbert space
‘%ﬁjﬁilng with the BRST-invariant propagator D(x) ((i vecchia, Frau,
Lerda, Sciuto 1087]) then contracting with the dual of the string

Hilbert space on leg j: E%itjring.
@ Sewing N-reggeons leads automatically to an amplitude

written in terms of quantities on a Riemann surface (7j;, w;i(z),

E(z,w),...) expressed in the Schottky group formalism.

[Lovelace 1970; Kaku, Yu 1970; Alessandrini 1971]
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The bosonic g-loop measure

@ Schottky groups are built by quotienting the Riemann sphere

CP! or the disk by Mébius maps z — S(z) = gig
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The bosonic g-loop measure

@ Schottky groups are built by quotienting the Riemann sphere
CP! or the disk by Mébius maps z — S(z) = 22+b

cz+d
@ A Mobius map can also be written ggj_g = k?_g where 7

and £ are the attractive and repulsive fixed points and k is the
multiplier.
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The bosonic g-loop measure

@ Schottky groups are built by quotienting the Riemann sphere
CP! or the disk by Mébius maps z — S(z) = 22+b

cz+d
@ A Mobius map can also be written ggj_g = k?_g where 7

and £ are the attractive and repulsive fixed points and k is the
multiplier.

@ Mobius maps obey the same composition rule as 2 x 2
matrices (2 5) € PSL(2, C).
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The bosonic g-loop measure

@ Schottky groups are built by quotienting the Riemann sphere
CP! or the disk by Mébius maps z — S(z) = 22+b

cz+d
@ A Mobius map can also be written ggj_g = k?_g where 7

and £ are the attractive and repulsive fixed points and k is the
multiplier.

@ Mobius maps obey the same composition rule as 2 x 2
matrices (2 5) € PSL(2, C).

o Fixed points <> eigenvectors; multiplier k < ratio of
eigenvalues.
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Bosonic string measure

Sewing

Mabius maps

Schottky groups

The bosonic g-loop measure

Schottky groups are built by quotienting the Riemann sphere
CP! or the disk by Mébius maps z — S(z) = 22+b

cz+d
@ A Mobius map can also be written ggj_g = k?_g where 7

and £ are the attractive and repulsive fixed points and k is the
multiplier.

@ Mobius maps obey the same composition rule as 2 x 2
matrices (2 5) € PSL(2, C).

o Fixed points <> eigenvectors; multiplier k < ratio of
eigenvalues.

@ Up to a global change of coordinates on the Riemann sphere

(one taking n — 0, & — o0), any Mdbius map is equivalent to
z > kz.
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The bosonic g-loop measure

e Given a Mdbius map, we can find circles C and ¢’ = S(C)
around £ and 7, such that inside of C is mapped to outside of

C’, and outside of C is mapped to inside of C'.
CP! ¢ C’

S

Sam Playle Multi-loop string amplitudes and Feynman Graphs



Bosonic string measure .
Sewing

Mabius maps

Schottky groups
The bosonic g-loop measure

e Given a Mdbius map, we can find circles C and ¢’ = S(C)
around £ and 7, such that inside of C is mapped to outside of

C’, and outside of C is mapped to inside of C'.
CP! ¢ C’

S
C

@ Imposing z ~ 5(z) < cutting out C and C’ and gluing their
boundaries = adding a handle to the RS.
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The bosonic g-loop measure

e Given a Mdbius map, we can find circles C and ¢’ = S(C)
around £ and 7, such that inside of C is mapped to outside of

C’, and outside of C is mapped to inside of C'.
CP! ¢ C’

S
C

@ Imposing z ~ 5(z) < cutting out C and C’ and gluing their
boundaries = adding a handle to the RS.

@ To get a RS with g handles, we repeat this with g different
Mobius maps Si, ..., Sg such that the circles don't overlap.
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The bosonic g-loop measure

e Given a Mdbius map, we can find circles C and ¢’ = S(C)
around £ and 7, such that inside of C is mapped to outside of

C’, and outside of C is mapped to inside of C'.
CP! ¢ C’

S
C

@ Imposing z ~ 5(z) < cutting out C and C’ and gluing their
boundaries = adding a handle to the RS.

@ To get a RS with g handles, we repeat this with g different
Mobius maps Si, ..., Sg such that the circles don't overlap.

o l.e. we impose z ~ T,(z) for all T, in the Schottky group,
the group of Mobius maps freely generated by Sy, ..., 5,.
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The bosonic g-loop measure

e Given a Mdbius map, we can find circles C and ¢’ = S(C)
around £ and 7, such that inside of C is mapped to outside of

C’, and outside of C is mapped to inside of C'.
CP! ¢ C’

S
C

@ Imposing z ~ 5(z) < cutting out C and C’ and gluing their
boundaries = adding a handle to the RS.

@ To get a RS with g handles, we repeat this with g different
Mobius maps Si, ..., Sg such that the circles don't overlap.

o l.e. we impose z ~ T,(z) for all T, in the Schottky group,
the group of Mobius maps freely generated by Sy, ..., 5,.

o Nice geometric realization (ky,7,,&,) of dim(M,) =3g — 3.
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The Schottky group

S it

5 Cz

C
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The bosonic g-loop measure

@ The g-loop bosonic string measure (vacuum diagram) is given
by

[Di Vecchia, Frau, Lerda, Sciuto 1987 Phys.Lett.B199]

1 &/ dk,d€,dn 1
7 :/ w SSp Ay
€ dVipe Ml_Il <kﬁ(77u - fu)2> (det Im 7)P/2

x (H]Oj[l(l - kg)D”) (%fkk‘gf) - (1)
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Mabius maps

Schottky groups

The bosonic g-loop measure

@ The g-loop bosonic string measure (vacuum diagram) is given
by

[Di Vecchia, Frau, Lerda, Sciuto 1987 Phys.Lett.B199]

1 &/ dk,d€,dn 1
7 :/ w SSp Ay
€ dVipe Ml_Il <kﬁ(77u - fu)2> (det Im 7)P/2

x (H’nlj(l - kg)D”) (%fkk‘gf) - (1)

«

@ Expressed in terms of the fixed points of the g Schottky
generators as well as the multipliers k, of all Schottky group
elements.
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Super-Schottky groups
The genus-g superstring measure

@ Just as its useful to parametrize bosonic string worldsheets as
Riemann surfaces, similarly we parametrize superstring
worldsheets as super-Riemann surfaces (SRS).
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The genus-g superstring measure

@ Just as its useful to parametrize bosonic string worldsheets as
Riemann surfaces, similarly we parametrize superstring
worldsheets as super-Riemann surfaces (SRS).

@ SRS are 1|1-complex-dimensional (i.e. one bosonic and one
fermionic dimension) manifolds with a bit more structure:
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The genus-g superstring measure

@ Just as its useful to parametrize bosonic string worldsheets as
Riemann surfaces, similarly we parametrize superstring
worldsheets as super-Riemann surfaces (SRS).

@ SRS are 1|1-complex-dimensional (i.e. one bosonic and one
fermionic dimension) manifolds with a bit more structure:

@ Their tangent bundle T*X has a rank-0|1 sub-bundle D such
that for any non-zero section D, D? is not proportional to D

anywhere.[See e.g. Witten 2012 [1209.2459]]
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The genus-g superstring measure

@ Just as its useful to parametrize bosonic string worldsheets as
Riemann surfaces, similarly we parametrize superstring
worldsheets as super-Riemann surfaces (SRS).

@ SRS are 1|1-complex-dimensional (i.e. one bosonic and one
fermionic dimension) manifolds with a bit more structure:

@ Their tangent bundle T*X has a rank-0|1 sub-bundle D such
that for any non-zero section D, D? is not proportional to D
anywhere.[See e.g. Witten 2012 [1209.2459]]

@ We can then always find superconformal coordinates z|6 with
D spanned by Dy = 0y + 00,, which satisfies D92 = 0.
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The genus-g superstring measure

@ Just as its useful to parametrize bosonic string worldsheets as
Riemann surfaces, similarly we parametrize superstring
worldsheets as super-Riemann surfaces (SRS).

@ SRS are 1|1-complex-dimensional (i.e. one bosonic and one
fermionic dimension) manifolds with a bit more structure:

@ Their tangent bundle T*X has a rank-0|1 sub-bundle D such
that for any non-zero section D, D? is not proportional to D
anywhere.[See e.g. Witten 2012 [1209.2459]]

@ We can then always find superconformal coordinates z|6 with
D spanned by Dy = 0y + 00,, which satisfies D92 = 0.

@ A second coordinate system 2\@ is superconformal <
Dyz = 0Dy0.
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Superstring measure

@ Just as its useful to parametrize bosonic string worldsheets as
Riemann surfaces, similarly we parametrize superstring
worldsheets as super-Riemann surfaces (SRS).

@ SRS are 1|1-complex-dimensional (i.e. one bosonic and one
fermionic dimension) manifolds with a bit more structure:

@ Their tangent bundle T*X has a rank-0|1 sub-bundle D such
that for any non-zero section D, D? is not proportional to D
anywhere.[See e.g. Witten 2012 [1209.2459]]

@ We can then always find superconformal coordinates z|6 with
D spanned by Dy = 0y + 00,, which satisfies D92 = 0.

@ A second coordinate system 2\@ is superconformal <
Dyz = 0Dy0.

@ E.g.: the 'super-Riemann sphere’ CP* defined by quotienting
C21 — 0 by the equivalence (w, z|f) ~ (Aw, Az|\0); X € C,.
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Superstring measure S MBS mErs

Super-Schottky groups
The genus-g superstring measure

@ There is a superconformal generalization of Mdbius maps,
easiest to write down as (2|1) x (2|1) OSp(1]|2) matrices
acting on the homogenous coordinates of cplit.

z a b|a« z
z |—=| c d|p 7 (2)
0 A ‘ e 0

where (for superconformality)

()
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Superstring measure

Super-Schottky groups
The genus-g superstring measure

@ There is a superconformal generalization of Mdbius maps,
easiest to write down as (2|1) x (2|1) OSp(1]|2) matrices
acting on the homogenous coordinates of cplit.

z a b|a« z
z |—=| c d|p 7 (2)
0 A ‘ e 0

where (for superconformality)

(-vmw(2)'0)
e:m—g ajébc )

@ Independent of overall factor, so fix super-determinant to 1,
yielding (5|4) — (2]2) = 3|2 parameters.
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Superstring measure S MBS mErs

Super-Schottky groups
The genus-g superstring measure

@ As in the bosonic case, we can characterize a super-Mobius
map by two super-fixed-points and one multiplier:
Z=S(U) Z=U

Z;S(V):kz;v (5)
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Super-Schottky groups
The genus-g superstring measure

@ As in the bosonic case, we can characterize a super-Mobius
map by two super-fixed-points and one multiplier:
Z=S(U) Z=U

Z;S(V):kz;v (5)

e Z, U,V represent super-points Z = z|1), U = u|f etc and
Z = U is the superconformal difference

Z-U=z—u—0. (6)
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Super-Schottky groups
The genus-g superstring measure

@ As in the bosonic case, we can characterize a super-Mobius
map by two super-fixed-points and one multiplier:
Z=S(U) Z=U

Z;S(V):kz;v (5)

e Z, U,V represent super-points Z = z|1), U = u|f etc and
Z = U is the superconformal difference

Z-U=z—u—0. (6)

o (z|yp — Z = Ulyp — 0 is superconformal).
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Superstring measure S MBS mErs

Super-Schottky groups
The genus-g superstring measure

@ As in the bosonic case, we can characterize a super-Mobius
map by two super-fixed-points and one multiplier:
Z=S(U) Z=U

Z;S(V):kz;v (5)

e Z, U,V represent super-points Z = z|1), U = u|f etc and
Z = U is the superconformal difference

Z-U=z—u—0. (6)

o (z|yp — Z = Ulyp — 0 is superconformal).
e Geometric realization of the 2 x (1|1) 4 (1|0) = 3|2
parameters.
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Super-Schottky groups
The genus-g superstring measure

@ We can repeat the Schottky story completely analogously to
the bosonic case.
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The genus-g superstring measure

@ We can repeat the Schottky story completely analogously to
the bosonic case.

@ Quotienting by a super-Mo&bius map is equivalent to sewing
two Neveu-Schwarz punctures at the two fixed points,
i.e. finding SC coordinates systems x|6, y|¢) which vanish at
the punctures and setting [witten 2012 rX1v:1209.5461]

xy=—k; yb=kip: xip=—ki0; Op=0. (7)
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Superstring measure i
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Super-Schottky groups
The genus-g superstring measure

@ We can repeat the Schottky story completely analogously to
the bosonic case.

@ Quotienting by a super-Mo&bius map is equivalent to sewing
two Neveu-Schwarz punctures at the two fixed points,
i.e. finding SC coordinates systems x|6, y|¢) which vanish at
the punctures and setting [witten 2012 rX1v:1209.5461]

xy=—k; yb=kip: xip=—ki0; Op=0. (7)

e We build a genus-g SRS by quotienting CPI* by a group of
super-Mobius maps freely generated by Sy,...,S;.
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Superstring measure i
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The genus-g superstring measure

@ We can repeat the Schottky story completely analogously to
the bosonic case.

@ Quotienting by a super-Mo&bius map is equivalent to sewing
two Neveu-Schwarz punctures at the two fixed points,
i.e. finding SC coordinates systems x|6, y|¢) which vanish at
the punctures and setting [witten 2012 rX1v:1209.5461]

xy=—k; yb=kip: xip=—ki0; Op=0. (7)

e We build a genus-g SRS by quotienting CPI* by a group of
super-Mobius maps freely generated by Sy,...,S;.

@ Super-fixed-points & multipliers minus OSp(1]2) gauge fixing
gives geometric realization of dim(9,) = 3g — 3|2g — 2.
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The genus-g superstring measure

@ The genus-g superstring vacuum amplitude for the NS sector

IS glven by [Di Vecchia, Frau, Hornfeck, Lerda, Sciuto 1987 Phys.Lett.B211]

/ (dk av,du, (1-k,) ) 1
% dVabc i k3/2 V= Uy (1—kﬁ/2)2 (det Tm 7)D/2

WACES ()] o

1—k
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The genus-g superstring measure

@ The genus-g superstring vacuum amplitude for the NS sector

IS glven by [Di Vecchia, Frau, Hornfeck, Lerda, Sciuto 1987 Phys.Lett.B211]

/ (dk av,du, (1-k,) ) 1
% dVabc i k3/2 V= Uy (1—kﬁ/2)2 (det Tm 7)D/2

WACES ()] o

1—k

@ Depends on fixed points of generators, period matrix 7, and
multipliers of all SSG elements.
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The genus-g superstring measure

@ The genus-g superstring vacuum amplitude for the NS sector

IS glven by [Di Vecchia, Frau, Hornfeck, Lerda, Sciuto 1987 Phys.Lett.B211]

/ (dk av,du, (1-k,) ) 1
% dVabc i k3/2 V= Uy (1—kﬁ/2)2 (det Tm 7)D/2

WACES ()] o

1—k
@ Depends on fixed points of generators, period matrix 7, and

multipliers of all SSG elements.
@ The integral includes a 2g — 2-dimensional Berezin integral.
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The genus-g superstring measure

@ The genus-g superstring vacuum amplitude for the NS sector

IS glven by [Di Vecchia, Frau, Hornfeck, Lerda, Sciuto 1987 Phys.Lett.B211]

/ dk AV, dU, (1— k) ) 1
% = dVabc st k3/2 Vie = Uu (1 — k/?)2/ (det ImT)P/2

WA (5] o

« 1—k

@ Depends on fixed points of generators, period matrix 7, and
multipliers of all SSG elements.

@ The integral includes a 2g — 2-dimensional Berezin integral.

@ Signs of ki/z are to be summed; this implements the
Gliozzi-Scherk-Olive projection (in the NS sector).
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The string theory setup
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The string theory setup

@ A stack of N parallel D3 branes has a worldvolume theory of
U(N) N = 4 super-Yang-Mills + gravity. witten 1006]
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The string theory setup

@ A stack of N parallel D3 branes has a worldvolume theory of
U(N) N = 4 super-Yang-Mills + gravity. witten 1006]

@ We look only at the NS sector of open strings, so we only get
the bosonic sector of N' = 4, i.e. gauge fields (from parallel
string modes) & 6 adjoint scalars (perpendicular modes).
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The string theory setup

@ A stack of N parallel D3 branes has a worldvolume theory of
U(N) N = 4 super-Yang-Mills + gravity. witten 1006]

@ We look only at the NS sector of open strings, so we only get
the bosonic sector of N' = 4, i.e. gauge fields (from parallel
string modes) & 6 adjoint scalars (perpendicular modes).

o Separating branes breaks U(N) — U(1)N and gives masses.



The D-brane stack

The worldsheet theory
The string model The Dirichlet conditions

The U(1) fields

Factorization into sectors

Sam Playle Multi-loop string am

itudes and Feynman Graphs



The D-brane stack
The worldsheet theory
The string model The Dirichlet conditions

The U(1) fields
Factorization into sectors

4’:“” : I .

" T .
(c) (d)
e We put commuting U(1) constant background fields on the
brane world volumes.
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4’:“” : I .

- T o
(e) ()
e We put commuting U(1) constant background fields on the
brane world volumes.
@ The D-branes are separated arbitrarily, giving masses
m,?j = (Y, — \7})\2/(27ro/)2 to strings between i'th, j'th
branes.
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@ This D-brane model can be implemented in the worldsheet
theory with some changes to the measure.
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@ This D-brane model can be implemented in the worldsheet
theory with some changes to the measure.

@ Because we're considering open strings, we start with the
(super)-upper-half-plane instead of the Riemann sphere; the
Schottky group elements have real multipliers and fixed points.

H 2y
by by

~Ss

S 1 52
_—
(XTI XN
uy % Vo up
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@ This D-brane model can be implemented in the worldsheet
theory with some changes to the measure.

@ Because we're considering open strings, we start with the
(super)-upper-half-plane instead of the Riemann sphere; the
Schottky group elements have real multipliers and fixed points.

H 2y
by by

~Ss

S 1 52
_—
(XTI XN
uy % Vo up

@ The supermoduli space s now has real dimension
3g —3J2g — 2 =3]2.
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@ The effect of the Dirichlet b.c.s is to change the exponent of
(det Im 7) from the spacetime dimension to the D-brane
dimension, —D/2 — —d /2 = —2.
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@ The effect of the Dirichlet b.c.s is to change the exponent of
(det Im 7) from the spacetime dimension to the D-brane
dimension, —D/2 — —d /2 = —2.

@ The effect of separating the D-branes is to insert a factor

Ns
Yy = He27ria’rﬁ,-1'-rﬁ/

i=1

where i) = (m}3, m?3) with m?® = (Y7 — YP)/(2rd)
encodes the distances between the 3 D-branes to which the
Worldsheet iS attached. [Frau, Lerda, Pesando, Russo, Sciuto 1997]
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@ The worldsheet action is still free; only boundary conditions
are changed by the background fields.
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@ The worldsheet action is still free; only boundary conditions
are changed by the background fields.

@ On the double of the surface, Z = X + iX2 has non-trivial
monodromy Z — e/“i Z around cycles crossing boundaries i
and j for € = arctan[2a/(B; — Bj)].

.;‘- .gs
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@ The worldsheet action is still free; only boundary conditions
are changed by the background fields.

@ On the double of the surface, Z = X + iX2 has non-trivial
monodromy Z — e/“i Z around cycles crossing boundaries i
and j for € = arctan[2a/(B; — Bj)].

o=
~——

@ Hard to implement the background fields directly, but can use
T-duality with closed strings propagating between D-branes at
an ang|e € & sew eXp|ICIt|y [Russo, Sciuto 2003]

&
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@ The background fields can be implemented in the string
amplitude by including the e-dependent factor [russo, Sciuto 2004 &

2007; Magnea, Russo, Sciuto 2004]
1
oo det(IMT) 1—ky 2\72
R — 1TET-€
() =e det (Im 77) EI H 1—kn )7

dimer-Ny | M3
_ g 2mET Ny ka 2)}

—2rier-N, n ’
— e—emeT Na ka)
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@ The background fields can be implemented in the string
amplitude by including the e-dependent factor [russo, Sciuto 2004 &

2007; Magnea, Russo, Sciuto 2004]
1
oo det(IMT) 1—ky 2\72
R — 1TET-€
() =e det (Im 77) EI H 1—kn )7
_ 1
(1 _ o2iméT-No koi’_é)

y (
(

(1 _ e271'i€-7'-l\7a kg)

_ 1
_diréeTr-N n—s3
1—e 1T €T aka 2)}

_oxier-N ’
1 — e—2mieT akg)

@ The ‘twisted determinant’ det (Im 7%) is an e-dependent
generalization of det (Im 7).
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@ The integrand of the string measure factorizes into four
sectors ZchHZ | Zsc.
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@ The integrand of the string measure factorizes into four
sectors ZchHZ | Zsc.

o If we write
o 1—kg_1/2 2
2=T11 () |

a n=1

then

d—2
R(€) 22 Z5 2 . 10-d
A N T T I S z
I (det Im7) "’ + <det ImT) ' Y(mi)(22) 2

and Zp. = everything else.
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© The Quantum Field Theory setup
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The Quantum Field Theory setup

@ We want a QFT that reproduces the low-energy behaviour of
our string theory.
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The Quantum Field Theory setup

@ We want a QFT that reproduces the low-energy behaviour of
our string theory.

@ We start with the standard D = 10 Yang-Mills Lagrangian
including the background field.
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Feynman diagrams

@ We want a QFT that reproduces the low-energy behaviour of
our string theory.

@ We start with the standard D = 10 Yang-Mills Lagrangian
including the background field.

@ In the Dirichlet directions M = | we put 9; — 0 and give the
background field a VEV A, — éM/ and write @, = ¥, a
scalar.
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The Quantum Field Theory setup

@ We want a QFT that reproduces the low-energy behaviour of
our string theory.

@ We start with the standard D = 10 Yang-Mills Lagrangian
including the background field.

@ In the Dirichlet directions M = | we put 9; — 0 and give the
background field a VEV A, — éM/ and write @, = ¥, a
scalar.

@ In the Neumann directions (parallel to the D brane) we put a
background field A,(x) = Bxin,2 which gives a constant field
strength F,uu = B("?ulﬁz& - 77#2771/1)'
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The Quantum Field Theory setup

@ It has been known since the early days of string theory that
the divergences of string theory give Yang-Mills theory in the
“Gervais-Neveu" gauge Jy QM + ivgQm QM = 0.[Gervais, Neveu 1977]
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The Quantum Field Theory setup

@ It has been known since the early days of string theory that
the divergences of string theory give Yang-Mills theory in the
“Gervais-Neveu" gauge Jy QM + ivgQm QM = 0.[Gervais, Neveu 1977]

@ We modify this. First, we replace 9y — Dy where
Dy = Opm + ig[Am, ] is the covariant derivative w.r.t. the
background field.
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@ It has been known since the early days of string theory that
the divergences of string theory give Yang-Mills theory in the
“Gervais-Neveu" gauge Jy QM + ivgQm QM = 0.[Gervais, Neveu 1977]

@ We modify this. First, we replace 9y — Dy where
Dy = Opm + ig[Am, ] is the covariant derivative w.r.t. the
background field.

@ Secondly, we impose the gauge condition before dimensional
reduction, so afterwards it looks like

D, Q" + igyQu.Q" — i[M;, ®;] — igy®;®; =0.
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@ It has been known since the early days of string theory that
the divergences of string theory give Yang-Mills theory in the
“Gervais-Neveu" gauge Jy QM + ivgQm QM = 0.[Gervais, Neveu 1977]

@ We modify this. First, we replace 9y — Dy where
Dy = Opm + ig[Am, ] is the covariant derivative w.r.t. the
background field.

@ Secondly, we impose the gauge condition before dimensional
reduction, so afterwards it looks like

D, Q" + igyQu.Q" — i[M;, ®;] — igy®;®; =0.

o This gives us e.g. mcc® vertices needed for matching with
string theory.
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The Quantum Field Theory setup

@ In our background A, (x) = Bx17,2, the scalar and gluon
position space propagators can be written down exactly in B
in terms of a heat kernel [Magnea, Russo, Sciuto 2004; Ritus 1977]:

Gi(x,y) = / dtKi(x, y: 1)
0

Gl (x,y) = — /0 dt exp(2igFUt),u K¥(x, y; t)

e*égBU(X1+Y1)(X2*Y2)*tm;2j gBijt

b(x v t) = __
’C (Xayrt) (47’[‘[‘)% smh(gB’Jt)

1 ..
x exp [ (= yu)B(F €)™ (%, — )|

1 B g8’ 1 h
t’tanh(gB¥t)’ tanh(gBit)’ t' "t

BFY ey = diag(
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@ Using these propagators, we can compute all of the 2-loop
Feynman diagrams:
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@ Using these propagators, we can compute all of the 2-loop
Feynman diagrams:

2
2 3 —t;m? 2
g oo [[iL;dtie 7 3—~°(d—-2)(d—-3
/ [l 8 { - ( X )(tl +ty + t3)
0

(4m)? AdP 1 ap 2 Ao

B 2(d —2) (sinh(gFltl)

(1 - h(gB Bsts)
cosh(gByty — gBst:
Afp gF1 2 37

+ cosh(2gB1t; — gBaty — gBst3) + cyclic permutations))

2(d — 2) 1—+2 _ )
- (t1 + t2) cosh(2Byty — 2B3t3) + cyclic permutations
Ao 2
2 < sinh(gBt1)
— — | ——=—( cosh(2gB1t1 — gBaty — gBst3)
Af gB1 (

2

cosh(3gB3t3 — 2gB1t; — ngtz)) + cyclic permutations> }

Sam Playle Multi

op string amplitudes and Feynman Graphs



The Lagrangian
The gauge condition
Propagators
Feynman diagrams

The Quantum Field Theory setup




The Lagrangian
The gauge condition

Propagators
Feynman diagrams

The Quantum Field Theory setup

2 sinh(F3t3)
— cosh(2F3t3 — Fit) — Ftp)

t;m?
i
F3

?:1 dtje i
d/2—1
a2 ae Lap

L
d
A

L1+ g
T2 (4m)d
t3 + cyclic permutations}
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The Quantum Field Theory setup

2 sinh(F3t3)
cosh(2F3t3 — Fit) — Ftp)

t;m?
i
F3

H?:l dtje "
a2 ae Lap

- (4m)d
d
+
A

t3 + cyclic permutatlons}

2
(t1 + tz))

tjm? d72(t L1
QB

1dt’c
A

oo U]
/ d/Z—IA {

T 47r)d
cosh(2gBst; — gB1t; — gBotp)

sinh(gBst3)
gB3
1-— '72
+
4

2

+
AF
cosh(gBsts — gBaty)

(

(sinh(g31 t)
&b
cosh(gBst3 — gB1 tl))> + cyclic permutatlons}

sinh(gBaty)
gB>
itudes and Feynman Graphs
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2 t:m?

g /‘x’ H?:ldtiei' ’{(1+’YZ 2 2 2)
m
(amyd Jo  AZ/2Tip

=i

X (d — 2+ 2cosh(2gByt; — 2g82t2)) + cyclic permutations} .
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2
IO sy g "L LG NS S e B g
- — 3~ M T 2

(4m)d Ad/2 IAF 2

X (d — 2+ 2cosh(2gByt; — 2g82t2)) + cyclic permutations} .

3 P oo [T}y dte” i} > 2 2 ' .
B : / d/2 1A (m3 —my — m2) + cyclic permutations .



The Quantum Field Theory setup

The Lagrangian

The gauge condition
Propagators

Feynman diagrams

2
2 . 3 —tim; 2
_; & /°°H;:1dfie ’m’{(1+’Y 2
(4m)? Jo AP ap

2
m
2

2
3*’"1*’”2)

(d — 2+ 2cosh(2gB1t; — 2gB> t2)) + cyclic permutatlons}

- m2
/OO - ldt et
J
- o

Cadan®

i(2
3
d/2 12

2

2
—m = m

) + cyclic permutations

3 2
— (N —1)2 =2

(m? + m3 + '"3)

m2
/OO ,1dte tm

i
d/2 1AF
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2
;e i gB; ]
sinh(gB;t;)

1
X E{d — 2+ 2cosh(2gB1 t] + 2gBaty)

-1
o (d — 2+ 2cosh(2gB1t; — 2gBats)

+ (d — 2+ 2cosh(2gB111)) (d — 2 + 2cosh(2g52:2)))} }

+ cyclic permutations ,
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2
;e i gB; ]
sinh(gB;t;)

1
X E{d — 2+ 2cosh(2gB1 t] + 2gBaty)

-1
o (d — 2+ 2cosh(2gB1t; — 2gBats)

+ (d — 2+ 2cosh(2gB111)) (d — 2 + 2cosh(2g52:2)))} }

+ cyclic permutations ,

2
2 ro0 2 dt.eff,‘m,- B: 2 1
=ik / [T1 5| T (d — 2+ 2cosh(2gB>12)) N
0 i sinh(gB;t;) 2

+ cyclic permutations
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2 2

2

2 —t;m?

. & S dtje 170 gB; v -1

=i d/ [TI ETe Ja+ S (L4 Ns)) N
(4m)d Jo j=1 t: sinh(gB;t;)

i

+ cyclic permutations.
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2 2

2

2 —t;m?

. & S dtje 170 gB; v -1

=i d/ [TI ETe Ja+ S (L4 Ns)) N
(4m)d Jo j=1 t: sinh(gB;t;)

i

+ cyclic permutations.

e N.B. all diagrams simplify considerably in 42 = 1 (the gauge
chosen by string theory).
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2 2

2

2 —t;m?

. & S dtje 170 gB; v -1

=i d/ [TI ETe Ja+ S (L4 Ns)) N
(4m)d Jo j=1 t: sinh(gB;t;)

i

+ cyclic permutations.

e N.B. all diagrams simplify considerably in 42 = 1 (the gauge
chosen by string theory).
@ Some e.g. the scalar-gluon Fig. of 8 completely vanish.
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@ The field theory limit
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The field theory limit

@ The o/ — 0 field theory limit arises from the boundary of
moduli space where string worldsheets degenerate.

CD—Q OCOODO
OO O OO
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The field theory limit

@ The o/ — 0 field theory limit arises from the boundary of
moduli space where string worldsheets degenerate.

CD—Q OCOODO
OO O OO

@ Degeneration points <> edges in the corresponding Feynman
graph.
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The field theory limit

@ The o/ — 0 field theory limit arises from the boundary of
moduli space where string worldsheets degenerate.

CD—Q OCOODO
OO O OO

@ Degeneration points <> edges in the corresponding Feynman

graph.
@ Heuristically, multipliers k,, <+ Schwinger parameters t, via
t,
k, = e
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The field theory limit

@ The o/ — 0 field theory limit arises from the boundary of
moduli space where string worldsheets degenerate.

CD—Q OCOODO
OO O OO

@ Degeneration points <> edges in the corresponding Feynman

graph.
@ Heuristically, multipliers k,, <+ Schwinger parameters t, via
t,
k, = e
@ Only finitely many terms survive the o/ — 0 limit: should get
the field theory amplitude exactly.
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The field theory limit
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The field theory limit

@ Roughly, when we expand the string amplitude, the power of
k.. corresponds to the mass-level of a string propagating along
the p'th leg.
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The field theory limit

@ Roughly, when we expand the string amplitude, the power of
k.. corresponds to the mass-level of a string propagating along
the p'th leg.

@ We can motivate this by the observation that the propagator
is roughly ~ kbra_
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The field theory limit

@ Roughly, when we expand the string amplitude, the power of
k.. corresponds to the mass-level of a string propagating along
the p'th leg.

@ We can motivate this by the observation that the propagator
is roughly ~ kbra_

@ The massless level will be exactly the contribution coming
from the coefficient of %.
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The field theory limit

@ Roughly, when we expand the string amplitude, the power of
k.. corresponds to the mass-level of a string propagating along
the p'th leg.

@ We can motivate this by the observation that the propagator
is roughly ~ kbra_

@ The massless level will be exactly the contribution coming
from the coefficient of %.

. : . dk
@ The leading behaviour of the measure is k3—/“2 so we have to
m

take a k}/z from one of the four factors Zhe 2| 21 Zsc-
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The field theory limit

@ Roughly, when we expand the string amplitude, the power of
k.. corresponds to the mass-level of a string propagating along
the p'th leg.

@ We can motivate this by the observation that the propagator
is roughly ~ kbra_

@ The massless level will be exactly the contribution coming
from the coefficient of %.

@ The leading behaviour of the measure is % so we have to
m
take a k}/z from one of the four factors Zhe 2| 21 Zsc-

1
@ The factor we take k; from determines the field propagating
in the corresponding leg of the Feynman diagram.
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The field theory limit

@ For example, to get the Feynman diagram

we take kll/2 from Z,. and k21/2 from Z, or Z.
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The field theory limit

@ For example, to get the Feynman diagram

we take kll/2 from Z,. and k21/2 from Z, or Z.

@ The coefficients of k,i/2 in those terms determine the
structure of the Feynman graph.
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The field theory limit

@ Some of the Feynman graphs we want to obtain have a
topology with a 3-fold symmetry e.g.
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The field theory limit

@ Some of the Feynman graphs we want to obtain have a
topology with a 3-fold symmetry e.g.

@ The 3 bosonic worldsheet moduli we are integrating over are
not symmetric (2 multipliers from the two handles; 1
anharmonic ratio of the fixed points) are not symmetric, so
how can we map them onto Schwinger times?
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@ The solution is to recognize that the worldsheet has a 3-fold
symmetry between homology cycles:
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@ The solution is to recognize that the worldsheet has a 3-fold
symmetry between homology cycles:

@ 3; cycles <+ SG elements, so the measure should be symmetric

between S;, So, (51_152).
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The field theory limit 2-fold symmetric diagrams

@ The solution is to recognize that the worldsheet has a 3-fold
symmetry between homology cycles:

@ 3; cycles <+ SG elements, so the measure should be symmetric

between S;, So, (51_152).
@ So choose as the bosonic moduli p;, i = 1,2,3 where

p1p3 = ki ; p2p3 = ka; p1p2 = k(S7'S>),
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The field theory limit

@ Recall that each loop in the Feynman graph has two edges,
and loops <+ SG generators, so we can associate p; to edges
of the Feynman graph naturally.
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The field theory limit

@ Recall that each loop in the Feynman graph has two edges,
and loops <+ SG generators, so we can associate p; to edges
of the Feynman graph naturally.

@ This makes the integrand overall 1-2-3 symmetric, but the
individual factors 2y, ZH' Z |, Zs aren't.
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The field theory limit

@ Recall that each loop in the Feynman graph has two edges,
and loops <+ SG generators, so we can associate p; to edges
of the Feynman graph naturally.

@ This makes the integrand overall 1-2-3 symmetric, but the
individual factors 2y, ZH' Z |, Zs aren't.

@ This can be fixed by rescaling the 2 Grassmann moduli
0; — 0; = f(p1, p2, p3)0;.
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The field theory limit

@ Recall that each loop in the Feynman graph has two edges,
and loops <+ SG generators, so we can associate p; to edges
of the Feynman graph naturally.

@ This makes the integrand overall 1-2-3 symmetric, but the
individual factors 2y, ZH' Z |, Zs aren't.

@ This can be fixed by rescaling the 2 Grassmann moduli
0i — 0i = f(p1, p2, p3)bi.

e QFT limit is found by isolating coefficient of dp;/p;, setting
pi = et/ for i = 1,2,3 and taking o/ — 0.
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The field theory limit

@ Recall that each loop in the Feynman graph has two edges,
and loops <+ SG generators, so we can associate p; to edges
of the Feynman graph naturally.

@ This makes the integrand overall 1-2-3 symmetric, but the
individual factors 2y, ZH' Z |, Zs aren't.

@ This can be fixed by rescaling the 2 Grassmann moduli
0; — 0; = f(p1, p2, p3)0;.

e QFT limit is found by isolating coefficient of dp;/p;, setting
pi = et/ for i = 1,2,3 and taking o/ — 0.

o Different Feynman graphs distinguished by choosing which
sector to take p,-l/2 (not k,-1/2) from, to multiply dp,-/p,-3/2 pole.
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The field theory limit

@ Recall that each loop in the Feynman graph has two edges,
and loops <+ SG generators, so we can associate p; to edges
of the Feynman graph naturally.

@ This makes the integrand overall 1-2-3 symmetric, but the
individual factors 2y, ZH' Z |, Zs aren't.

@ This can be fixed by rescaling the 2 Grassmann moduli
0; — 0; = f(p1, p2, p3)0;.

e QFT limit is found by isolating coefficient of dp;/p;, setting
pi = et/ for i = 1,2,3 and taking o/ — 0.

o Different Feynman graphs distinguished by choosing which
sector to take p,-l/2 (not k,-1/2) from, to multiply dp,-/p,-3/2 pole.

@ Unlike with bosonic strings, the dp,-/p,‘-?’/2 pole disappears after
Grassmann integration + GSO projection (so no tachyons).

Sam Playle Multi-loop string amplitudes and Feynman Graphs



Degenerating worldsheets

Isolating Feynman diagrams

A 3-fold symmetric parametrization
2-fold symmetric diagrams

The field theory limit

@ After carrying out this procedure mechanically, we obtain
exactly all the Feynman graphs with this topology, in GN

gauge 72 = 1:
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The field theory limit

@ After carrying out this procedure mechanically, we obtain
exactly all the Feynman graphs with this topology, in GN

gauge 72 = 1:

@ Diagrams with an odd number of scalars originate from
sub-leading terms in the expansion of

2

. = / ! 2 ! m2
Q2T — T 2 2 (1! mB0162 (VB3 +/Pipap) + )
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The field theory limit

@ This doesn't capture all of the diagrams e.g. the figure-of-8's.
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The field theory limit

@ This doesn't capture all of the diagrams e.g. the figure-of-8's.

@ To get these, we switch back to the less symmetric bosonic
moduli with two multipliers and one anharmonic ratio.
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The field theory limit

@ This doesn't capture all of the diagrams e.g. the figure-of-8's.

@ To get these, we switch back to the less symmetric bosonic
moduli with two multipliers and one anharmonic ratio.

o Now we get an integral like

/Hdk /d d9dd>( +F2+F+0¢)
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The field theory limit

@ This doesn't capture all of the diagrams e.g. the figure-of-8's.

@ To get these, we switch back to the less symmetric bosonic
moduli with two multipliers and one anharmonic ratio.

o Now we get an integral like

/Hdk /d d9dd>( +F2+F+0¢)

@ We need to precisely identify the boundaries of super-moduli
space to evaluate the integral.
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The field theory limit

@ This doesn't capture all of the diagrams e.g. the figure-of-8's.

@ To get these, we switch back to the less symmetric bosonic
moduli with two multipliers and one anharmonic ratio.

o Now we get an integral like

/Hdk /d d9dd>( +F2+F+0¢)

@ We need to precisely identify the boundaries of super-moduli
space to evaluate the integral.

o E.g. theintegral [dudfd¢ i = [ dfdepd(log u) differs by 1
depending on whether we take the lower limit as v =0 or
p3 ~ u(1+ 0¢) = 0 (despite the same leading behaviour).
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@ Using the correct integration limits, the % term vanishes
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@ Using the correct integration limits, the % term vanishes
o the u® term gives correctly the figure-of-eight graphs
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A 3-fold symmetric metrization

The field theory limit ZloldEvpnetigiasans

@ Using the correct integration limits, the % term vanishes
o the u® term gives correctly the figure-of-eight graphs

o the 1/(1 — u+ 6¢) term gives a contribution which has the
structure of 1PR diagrams but with a wrong factor of
2—maybe the wrong integration limit (cf. u vs. p3).
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@ We have obtained a graph-by-graph matching of 1Pl two-loop
string diagrams with pure Yang-Mills in NS sector,
incorporating background gauge fields.
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Summary & Outlook

@ We have obtained a graph-by-graph matching of 1Pl two-loop
string diagrams with pure Yang-Mills in NS sector,
incorporating background gauge fields.

@ This should allow us to compute e.g. the effective action for
Yang-Mills quite directly from string theory.
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Summary

Summary & Outlook

@ We have obtained a graph-by-graph matching of 1Pl two-loop
string diagrams with pure Yang-Mills in NS sector,
incorporating background gauge fields.

@ This should allow us to compute e.g. the effective action for
Yang-Mills quite directly from string theory.

@ Direction in which the work can be extended: spacetime
fermions (Ramond sector), gravity amplitudes (with closed
strings), more loops.
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