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It was noticed in the early days of string theory that in the
limit of infinite string tension α′ → 0, string theory reduces to
Yang-Mills gauge theory coupled to gravity.
[Gervais, Neveu, Scherk, Schwarz et al. 1970s]

This can be used as a tool to calculate gauge theory
amplitudes; indeed some amplitudes were computed for the
first time this way.
[Bern, Dixon, Dunbar, Mangano, Kosower, Parke, Xu et al. 1988— ]

String amplitudes have been used to find individual Feynman
graphs to compute e.g. one-loop Yang-Mills renormalization
scattering [Di Vecchia, Lerda, Magnea, Marotta, Russo 1996a] and Φ3 scalar
scattering at 2-loops. [Di Vecchia, Lerda, Magnea, Marotta, Russo 1996b]
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To test our techniques, we use compute the two-loop effective
action for strings in a constant electromagnetic field—this
allows us to identify the individual Feynman diagrams.

On the QFT side, we extend calculations done for scalar QED
at 1 loop by Schwinger in the 1950s and at 2 loops in the
1970s to Yang-Mills + scalars.
[Schwinger 1954, Ritus 1977]

The 1 loop amplitude for open strings in a magnetic field was
calculated in the mid 1980s.
[Fradkin, Tseytlin 1985; Abouelsaood, Callan, Nappi, Yost 1988 etc]
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The string measure

g -loop string vertices can obtained by ‘sewing’ together
3-reggeon vertices V ∈H ∗⊗3

string.
[Sciuto 1969; Caneschi, Schwimmer, Veneziano 1969; Della Selva, Saito 1970; Di Vecchia, Nakayama,

Petersen, Sciuto 1986]

‘Sewing’ two legs i , j means acting on the ith Hilbert space
H ∗,i

string with the BRST-invariant propagator D(x) ([Di Vecchia, Frau,

Lerda, Sciuto 1987]) then contracting with the dual of the string
Hilbert space on leg j : H j

string.

Sewing N-reggeons leads automatically to an amplitude
written in terms of quantities on a Riemann surface (τij , ωi (z),
E (z ,w),. . . ) expressed in the Schottky group formalism.
[Lovelace 1970; Kaku, Yu 1970; Alessandrini 1971]
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The bosonic g-loop measure

Schottky groups are built by quotienting the Riemann sphere
CP1 or the disk by Möbius maps z 7→ S(z) = az+b

cz+d

A Möbius map can also be written S(z)−η
S(z)−ξ = k z−η

z−ξ where η
and ξ are the attractive and repulsive fixed points and k is the
multiplier.

Möbius maps obey the same composition rule as 2× 2
matrices ( a b

c d ) ∈ PSL(2,C).

Fixed points ↔ eigenvectors; multiplier k ↔ ratio of
eigenvalues.

Up to a global change of coordinates on the Riemann sphere
(one taking η → 0, ξ →∞), any Möbius map is equivalent to
z 7→ kz .
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A Möbius map can also be written S(z)−η
S(z)−ξ = k z−η

z−ξ where η
and ξ are the attractive and repulsive fixed points and k is the
multiplier.
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A Möbius map can also be written S(z)−η
S(z)−ξ = k z−η

z−ξ where η
and ξ are the attractive and repulsive fixed points and k is the
multiplier.
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Möbius maps
Schottky groups
The bosonic g-loop measure

Schottky groups are built by quotienting the Riemann sphere
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Given a Möbius map, we can find circles C and C′ = S(C)
around ξ and η, such that inside of C is mapped to outside of
C′, and outside of C is mapped to inside of C′.

ξ

η

CP1

S

S
S

C

C′

Imposing z ∼ S(z) ⇔ cutting out C and C′ and gluing their
boundaries ⇒ adding a handle to the RS.

To get a RS with g handles, we repeat this with g different
Möbius maps S1, . . . ,Sg such that the circles don’t overlap.

I.e. we impose z ∼ Tα(z) for all Tα in the Schottky group,
the group of Möbius maps freely generated by S1, . . . ,Sg .

Nice geometric realization (kµ, ηµ, ξµ) of dim(Mg ) = 3g − 3.
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The Schottky group

v1

u1

CP1

S1

R1

R1′

R0

C1

C1′

S2

u2v2

C2

C2′

R2

R2′

b1

b2

a2

a1

Σ2∼S
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Möbius maps
Schottky groups
The bosonic g-loop measure

The g -loop bosonic string measure (vacuum diagram) is given
by
[Di Vecchia, Frau, Lerda, Sciuto 1987 Phys.Lett.B199]

Zg =

∫
1

dVabc

g∏
µ=1

( dkµ dξµ dηµ
k2
µ(ηµ − ξµ)2

) 1

(det Im τ)D/2

×
(∏

α

′ ∞∏
n=1

(1− knα)−D+2

)(∏M
µ=1(1− kµ)2∏
α
′(1− kα)2

)
. (1)

Expressed in terms of the fixed points of the g Schottky
generators as well as the multipliers kα of all Schottky group
elements.
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elements.
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Super-Möbius maps
Super-Schottky groups
The genus-g superstring measure

Presentation Outline

1 Some background

2 Bosonic string measure

3 Superstring measure

4 The string model

5 The Quantum Field Theory setup

6 The field theory limit

7 Summary

Sam Playle Multi-loop string amplitudes and Feynman Graphs



Some background
Bosonic string measure

Superstring measure
The string model

The Quantum Field Theory setup
The field theory limit

Summary

Super-Riemann surfaces
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Just as its useful to parametrize bosonic string worldsheets as
Riemann surfaces, similarly we parametrize superstring
worldsheets as super-Riemann surfaces (SRS).

SRS are 1|1-complex-dimensional (i.e. one bosonic and one
fermionic dimension) manifolds with a bit more structure:

Their tangent bundle T ∗Σ has a rank-0|1 sub-bundle D such
that for any non-zero section D, D2 is not proportional to D
anywhere.[See e.g. Witten 2012 [1209.2459]]

We can then always find superconformal coordinates z |θ with
D spanned by Dθ ≡ ∂θ + θ∂z , which satisfies D2

θ = ∂z .

A second coordinate system ẑ |θ̂ is superconformal ⇔
Dθ ẑ = θ̂Dθθ̂.

E.g.: the ‘super-Riemann sphere’ CP1|1 defined by quotienting
C2|1 − 0 by the equivalence (w , z |θ) ∼ (λw , λz |λθ); λ ∈ C∗.
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There is a superconformal generalization of Möbius maps,
easiest to write down as (2|1)× (2|1) OSp(1|2) matrices
acting on the homogenous coordinates of CP1|1: z1

z2

θ

 7→
 a b α

c d β

γ δ e

 z1

z2

θ

 (2)

where (for superconformality)(
−δ
γ

)
=
√
ad − bc

(
a b
c d

)−1(
α

β

)
(3)

e =
√
ad − bc − 3

2

αβ√
ad − bc

. (4)

Independent of overall factor, so fix super-determinant to 1,
yielding (5|4)− (2|2) = 3|2 parameters.

Sam Playle Multi-loop string amplitudes and Feynman Graphs



Some background
Bosonic string measure

Superstring measure
The string model

The Quantum Field Theory setup
The field theory limit

Summary

Super-Riemann surfaces
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As in the bosonic case, we can characterize a super-Möbius
map by two super-fixed-points and one multiplier:

Z .− S(U)

Z .− S(V )
= k

Z .− U

Z .− V
(5)

Z ,U,V represent super-points Z = z |ψ, U = u|θ etc and
Z .− U is the superconformal difference

Z .− U ≡ z − u − ψθ . (6)

(z |ψ 7→ Z .− U|ψ − θ is superconformal).

Geometric realization of the 2× (1|1) + (1|0) = 3|2
parameters.
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We can repeat the Schottky story completely analogously to
the bosonic case.

Quotienting by a super-Möbius map is equivalent to sewing
two Neveu-Schwarz punctures at the two fixed points,
i.e. finding SC coordinates systems x |θ, y |ψ which vanish at
the punctures and setting [Witten 2012 arXiv:1209.5461]

xy = −k ; yθ = k
1
2ψ ; xψ = −k

1
2 θ ; θψ = 0 . (7)

We build a genus-g SRS by quotienting CP1|1 by a group of
super-Möbius maps freely generated by S1, . . . ,Sg .

Super-fixed-points & multipliers minus OSp(1|2) gauge fixing
gives geometric realization of dim(Mg ) = 3g − 3|2g − 2.
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Quotienting by a super-Möbius map is equivalent to sewing
two Neveu-Schwarz punctures at the two fixed points,
i.e. finding SC coordinates systems x |θ, y |ψ which vanish at
the punctures and setting [Witten 2012 arXiv:1209.5461]

xy = −k ; yθ = k
1
2ψ ; xψ = −k

1
2 θ ; θψ = 0 . (7)

We build a genus-g SRS by quotienting CP1|1 by a group of
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The genus-g superstring vacuum amplitude for the NS sector
is given by [Di Vecchia, Frau, Hornfeck, Lerda, Sciuto 1987 Phys.Lett.B211]

Ẑg =

∫
1

dVabc

g∏
µ=1

( dkµ
k

3/2
µ

dVµ dUµ
Vµ

.− Uµ

(1− kµ)2

(1− k
1/2
µ )2

) 1

(det Im τ )D/2

×
∏
α

′
[ ∞∏
n=1

(
1− k

n−1/2
α

1− knα

)D ∞∏
n=2

(
1− knα

1− k
n−1/2
α

)2]
. (8)

Depends on fixed points of generators, period matrix τ , and
multipliers of all SSG elements.

The integral includes a 2g − 2-dimensional Berezin integral.

Signs of k
1/2
µ are to be summed; this implements the

Gliozzi-Scherk-Olive projection (in the NS sector).
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The string theory setup

A stack of N parallel D3 branes has a worldvolume theory of
U(N) N = 4 super-Yang-Mills + gravity. [Witten 1996]

We look only at the NS sector of open strings, so we only get
the bosonic sector of N = 4, i.e. gauge fields (from parallel
string modes) & 6 adjoint scalars (perpendicular modes).
Separating branes breaks U(N)→ U(1)N and gives masses.
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(b)

We put commuting U(1) constant background fields on the
brane world volumes.

The D-branes are separated arbitrarily, giving masses
m2

ij = |( ~Yi − ~Yj)|2/(2πα′)2 to strings between i ’th, j ’th
branes.
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This D-brane model can be implemented in the worldsheet
theory with some changes to the measure.

Because we’re considering open strings, we start with the
(super)-upper-half-plane instead of the Riemann sphere; the
Schottky group elements have real multipliers and fixed points.

u1 u2v2v1

H

S1 S2

Σ2

∼S
b2b1

The supermoduli space M2 now has real dimension
3g − 3|2g − 2 = 3|2.
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The effect of the Dirichlet b.c.s is to change the exponent of
(det Im τ ) from the spacetime dimension to the D-brane
dimension, −D/2→ −d/2 = −2.

The effect of separating the D-branes is to insert a factor

Y =
Ns∏
i=1

e2πiα′ ~mI ·τ · ~mI

where ~mI ≡ (m13
I ,m

23
I ) with mab

I ≡ (Y a
I − Y b

I )/(2πα′)
encodes the distances between the 3 D-branes to which the
worldsheet is attached. [Frau, Lerda, Pesando, Russo, Sciuto 1997]
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The worldsheet action is still free; only boundary conditions
are changed by the background fields.
On the double of the surface, Z = X 1 + iX 2 has non-trivial
monodromy Z 7→ eiεijZ around cycles crossing boundaries i
and j for εij = arctan[2α′(Bi − Bj)].

Hard to implement the background fields directly, but can use
T-duality with closed strings propagating between D-branes at
an angle ε & sew explicitly. [Russo, Sciuto 2003]
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The background fields can be implemented in the string
amplitude by including the ε-dependent factor [Russo, Sciuto 2004 &

2007; Magnea, Russo, Sciuto 2004]:

R(~ε) = e−iπ~ε·τ ·~ε
det (Im τ )

det (Im τ~ε)

∏
α

′ ∞∏
n=1

{(
1− k

n− 1
2

α

1− knα

)−2

,

×
(
1− e 2iπ~ε·τ · ~Nα k

n− 1
2

α

)(
1− e−2iπ~ε·τ · ~Nα k

n− 1
2

α

)(
1− e 2πi~ε·τ · ~Nα knα

)(
1− e−2πi~ε·τ · ~Nα knα

) }
.

The ‘twisted determinant’ det (Im τ~ε) is an ε-dependent
generalization of det (Im τ ).
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The integrand of the string measure factorizes into four
sectors ZbcZ‖Z⊥Zsc.

If we write

Z2 =
∏
α

′
[ ∞∏
n=1

(
1− k

n−1/2
α

1− knα

)2]
then

Z‖ =
R(~ε)Z2

(det Im τ )
; Z⊥ =

(
Z2

det Im τ

) d−2
2

; Zsc = Y( ~mI )(Z2)
10−d

2

and Zbc = everything else.
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We want a QFT that reproduces the low-energy behaviour of
our string theory.

We start with the standard D = 10 Yang-Mills Lagrangian
including the background field.

In the Dirichlet directions M = I we put ∂I 7→ 0 and give the
background field a VEV AI 7→ 1

gMI and write QI = ΦI , a
scalar.

In the Neumann directions (parallel to the D brane) we put a
background field Aµ(x) = Bx1ηµ2 which gives a constant field
strength Fµν = B(ηµ1ην2 − ηµ2ην1).
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It has been known since the early days of string theory that
the divergences of string theory give Yang-Mills theory in the
“Gervais-Neveu” gauge ∂MQM + iγgQMQM = 0.[Gervais, Neveu 1972]

We modify this. First, we replace ∂M 7→ DM where
DM = ∂M + ig [AM , ·] is the covariant derivative w.r.t. the
background field.

Secondly, we impose the gauge condition before dimensional
reduction, so afterwards it looks like

DµQ
µ + igγQµQ

µ − i [Mi ,Φi ]− igγΦIΦI = 0 .

This gives us e.g. mccΦ vertices needed for matching with
string theory.
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reduction, so afterwards it looks like

DµQ
µ + igγQµQ

µ − i [Mi ,Φi ]− igγΦIΦI = 0 .

This gives us e.g. mccΦ vertices needed for matching with
string theory.
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In our background Aµ(x) = Bx1ηµ2, the scalar and gluon
position space propagators can be written down exactly in B
in terms of a heat kernel [Magnea, Russo, Sciuto 2004; Ritus 1977]:

G ij(x , y) =

∫ ∞
0

dt Kij(x , y ; t)

G ij
µν(x , y) = −

∫ ∞
0

dt exp(2igF ij t)µν Kij(x , y ; t)

Kij(x , y ; t) =
e−

i
2
gB ij (x1+y1)(x2−y2)−tm2

ij

(4πt)
d
2

gB ij t

sinh(gB ij t)

× exp
[1

4
(xµ − yµ)β(F ij, t)µν(xν − yν)

]
β(F ij, t)µν = diag

(1

t
,

gB ij

tanh(gB ij t)
,

gB ij

tanh(gB ij t)
,

1

t
, . . . ,

1

t

)
.
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Using these propagators, we can compute all of the 2-loop
Feynman diagrams:

=
g2

(4π)d

∫ ∞
0

∏3
i=1 dti e

−ti m
2
i

∆
d/2−1
0 ∆F

{
−

3− γ2

2

(d − 2)(d − 3)

∆0

(t1 + t2 + t3)

−
2(d − 2)

∆F

(
sinh(gF1t1)

gF1

( 1− γ2

2
cosh(gB2t2 − gB3t3)

+ cosh(2gB1t1 − gB2t2 − gB3t3) + cyclic permutations
))

−
2(d − 2)

∆0

((
t1 +

1− γ2

2
t2

)
cosh(2B2t2 − 2B3t3) + cyclic permutations

)

−
2

∆F

(
sinh(gB1t1)

gB1

(
cosh(2gB1t1 − gB2t2 − gB3t3)

+
1− γ2

2
cosh(3gB3t3 − 2gB1t1 − gB2t2)

)
+ cyclic permutations

)}
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=
1 + γ2

2

g2

(4π)d

∫ ∞
0

∏3
i=1 dti e

−ti m
2
i

∆
d/2−1
0 ∆F

{ 2

∆F

sinh(F3t3)

F3

cosh(2F3t3 − F1t1 − F2t2)

+
d − 2

∆0

t3 + cyclic permutations
}

= −Ns
g2

(4π)d

∫ ∞
0

∏3
i=1 dti e

−ti m
2
i

∆
d/2−1
0 ∆F

{
d − 2

∆0

(
t3 +

1− γ2

4
(t1 + t2)

)

+
2

∆F

(
sinh(gB3t3)

gB3

cosh(2gB3t3 − gB1t1 − gB2t2)

+
1− γ2

4

( sinh(gB1t1)

gB1

cosh(gB3t3 − gB2t2)

+
sinh(gB2t2)

gB2

cosh(gB3t3 − gB1t1)
))

+ cyclic permutations

}
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−ti m
2
i

∆
d/2−1
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d − 2

∆0

(
t3 +

1− γ2

4
(t1 + t2)

)

+
2

∆F

(
sinh(gB3t3)

gB3

cosh(2gB3t3 − gB1t1 − gB2t2)

+
1− γ2

4

( sinh(gB1t1)

gB1

cosh(gB3t3 − gB2t2)

+
sinh(gB2t2)

gB2

cosh(gB3t3 − gB1t1)
))
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F3
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∆0
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i=1 dti e

−ti m
2
i

∆
d/2−1
0 ∆F
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d − 2
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(
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1− γ2

4
(t1 + t2)
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+
2

∆F

(
sinh(gB3t3)

gB3

cosh(2gB3t3 − gB1t1 − gB2t2)
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4
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= i
g2

(4π)d

∫ ∞
0

∏3
i=1 dti e

−ti m
2
i

∆
d/2−1
0 ∆F

{( 1 + γ2

2
m2

3 − m2
1 − m2

2

)

×
(
d − 2 + 2 cosh(2gB1t1 − 2gB2t2)

)
+ cyclic permutations

}
.

= −i
g2

(4π)d

∫ ∞
0

∏3
i=1 dti e

−ti m
2
i

∆
d/2−1
0 ∆F

(m2
3 − m2

1 − m2
2) + cyclic permutations .

= i (Ns − 1)
3− γ2

2
(m2

1 + m2
2 + m2

3)
g2

(4π)d

∫ ∞
0

∏3
i=1 dti e

−ti m
2
i

∆
d/2−1
0 ∆F

.
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= i
g2

(4π)d

∫ ∞
0

∏3
i=1 dti e

−ti m
2
i

∆
d/2−1
0 ∆F

{( 1 + γ2

2
m2

3 − m2
1 − m2

2

)

×
(
d − 2 + 2 cosh(2gB1t1 − 2gB2t2)

)
+ cyclic permutations

}
.

= −i
g2

(4π)d

∫ ∞
0

∏3
i=1 dti e

−ti m
2
i

∆
d/2−1
0 ∆F

(m2
3 − m2

1 − m2
2) + cyclic permutations .

= i (Ns − 1)
3− γ2

2
(m2

1 + m2
2 + m2

3)
g2

(4π)d

∫ ∞
0

∏3
i=1 dti e

−ti m
2
i

∆
d/2−1
0 ∆F

.
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= i
g2

(4π)d

∫ ∞
0

[ 2∏
i=1

dti e
−ti m

2
i gBi

t
d/2−1
i sinh(gBi ti )

]

×
1

2

{
d − 2 + 2 cosh(2gB1t1 + 2gB2t2)

+
γ2 − 1

2

(
d − 2 + 2 cosh(2gB1t1 − 2gB2t2)

+
(
d − 2 + 2 cosh(2gB1t1)

)(
d − 2 + 2 cosh(2gB2t2)

))}
.

+ cyclic permutations ,

= i
g2

(4π)d

∫ ∞
0

[ 2∏
i=1

dti e
−ti m

2
i gBi

t
d/2−1
i sinh(gBi ti )

] γ2 − 1

2

(
d − 2 + 2 cosh(2gB2t2)

)
NS

+ cyclic permutations
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= i
g2

(4π)d

∫ ∞
0

[ 2∏
i=1

dti e
−ti m

2
i gBi

t
d/2−1
i sinh(gBi ti )

](
1 +

γ2 − 1

2
(1 + NS)

)
NS

+ cyclic permutations.

N.B. all diagrams simplify considerably in γ2 = 1 (the gauge
chosen by string theory).

Some e.g. the scalar-gluon Fig. of 8 completely vanish.
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The field theory limit

The α′ → 0 field theory limit arises from the boundary of
moduli space where string worldsheets degenerate.

Degeneration points ↔ edges in the corresponding Feynman
graph.
Heuristically, multipliers kµ ↔ Schwinger parameters tµ via

kµ = e−
tµ
α′ .

Only finitely many terms survive the α′ → 0 limit: should get
the field theory amplitude exactly.
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Roughly, when we expand the string amplitude, the power of
kµ corresponds to the mass-level of a string propagating along
the µ’th leg.

We can motivate this by the observation that the propagator
is roughly ∼ kL0−a

µ .

The massless level will be exactly the contribution coming
from the coefficient of

dkµ
kµ

.

The leading behaviour of the measure is
dkµ

k
3/2
µ

so we have to

take a k
1/2
µ from one of the four factors ZbcZ‖Z⊥Zsc.

The factor we take k
1
2
µ from determines the field propagating

in the corresponding leg of the Feynman diagram.
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For example, to get the Feynman diagram

we take k
1/2
1 from Zsc and k

1/2
2 from Z⊥ or Z‖.

The coefficients of k
1/2
µ in those terms determine the

structure of the Feynman graph.
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Some of the Feynman graphs we want to obtain have a
topology with a 3-fold symmetry e.g.

The 3 bosonic worldsheet moduli we are integrating over are
not symmetric (2 multipliers from the two handles; 1
anharmonic ratio of the fixed points) are not symmetric, so
how can we map them onto Schwinger times?
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The solution is to recognize that the worldsheet has a 3-fold
symmetry between homology cycles:

a1 a2

(a−1
1 · a2)

ai cycles ↔ SG elements, so the measure should be symmetric
between S1, S2, (S−1

1 S2).

So choose as the bosonic moduli pi , i = 1, 2, 3 where

p1p3 = k1 ; p2p3 = k2 ; p1p2 = k(S−1
1 S2) ,
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Recall that each loop in the Feynman graph has two edges,
and loops ↔ SG generators, so we can associate pi to edges
of the Feynman graph naturally.

This makes the integrand overall 1–2–3 symmetric, but the
individual factors Zbc, Z‖, Z⊥, Zsc aren’t.

This can be fixed by rescaling the 2 Grassmann moduli
θi → θ̃i = f (p1, p2, p3)θi .

QFT limit is found by isolating coefficient of dpi/pi , setting
pi = e−ti/α

′
for i = 1, 2, 3 and taking α′ → 0.

Different Feynman graphs distinguished by choosing which

sector to take p
1/2
i (not k

1/2
i ) from, to multiply dpi/p

3/2
i pole.

Unlike with bosonic strings, the dpi/p
3/2
i pole disappears after

Grassmann integration + GSO projection (so no tachyons).
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After carrying out this procedure mechanically, we obtain
exactly all the Feynman graphs with this topology, in GN
gauge γ2 = 1:

, , , , , . . .

Diagrams with an odd number of scalars originate from
sub-leading terms in the expansion of

e2πi ~mI ·τ · ~mI = p
α′m2

1
1 p

α′m2
2

2 p
α′m2

3
3

(
1+α′m2

3θ1θ2

(√
p3+
√
p1p2p3

)
+. . .

)
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This doesn’t capture all of the diagrams e.g. the figure-of-8’s.

To get these, we switch back to the less symmetric bosonic
moduli with two multipliers and one anharmonic ratio.

Now we get an integral like∫ 2∏
i=1

dki
ki

∫
du dθ dφ

(F1

u
+ F2 +

F3

1− u + θφ

)
.

We need to precisely identify the boundaries of super-moduli
space to evaluate the integral.

E.g. the integral
∫
du dθ dφ 1

u =
∫
dθdφd(log u) differs by 1

depending on whether we take the lower limit as u = 0 or
p3 ∼ u(1 + θφ) = 0 (despite the same leading behaviour).
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To get these, we switch back to the less symmetric bosonic
moduli with two multipliers and one anharmonic ratio.

Now we get an integral like∫ 2∏
i=1

dki
ki

∫
du dθ dφ

(F1

u
+ F2 +

F3

1− u + θφ

)
.

We need to precisely identify the boundaries of super-moduli
space to evaluate the integral.

E.g. the integral
∫
du dθ dφ 1

u =
∫
dθdφd(log u) differs by 1

depending on whether we take the lower limit as u = 0 or
p3 ∼ u(1 + θφ) = 0 (despite the same leading behaviour).
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Using the correct integration limits, the 1
u term vanishes

the u0 term gives correctly the figure-of-eight graphs

, ,

the 1/(1− u + θφ) term gives a contribution which has the
structure of 1PR diagrams but with a wrong factor of
2—maybe the wrong integration limit (cf. u vs. p3).
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Summary & Outlook

We have obtained a graph-by-graph matching of 1PI two-loop
string diagrams with pure Yang-Mills in NS sector,
incorporating background gauge fields.

This should allow us to compute e.g. the effective action for
Yang-Mills quite directly from string theory.

Direction in which the work can be extended: spacetime
fermions (Ramond sector), gravity amplitudes (with closed
strings), more loops.
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Grazie!
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