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Abstract

In an introductory chapter, a summary of the construction of string theories is given, for

both the bosonic string and the RNS superstring. Relevant mathematical technology is

introduced, including super-Riemann surfaces. Conformal field theory is discussed and

BRST quantization of the string is explained.

(Super) Schottky groups for the construction of higher-genus Riemann surfaces are

introduced. As an example of the use of Schottky groups and super-Riemann surfaces,

the one-loop gluon two point function is calculated from string theory.

The incorporation of background gauge fields into string theory via nontrivial mon-

odromies (twists) is discussed. The two loop Prym period matrix determinant is computed

in the Schottky parametrization.

The string theory model with N parallel separated D3-branes is introduced, and

the formulae for the the vacuum amplitude are written down. A manifestly symmet-

ric parametrization of two loop Schottky space is introduced. The relationship between

worldsheet moduli and Feynman graph Schwinger times is given. The α′ → 0 limit of the

amplitude is written down explicitly.

The lagrangian for the corresponding gauge theory is found, making use of a general-

ization of Gervais-Neveu gauge which accounts for scalar VEVs. Propagators in the given

gauge field background are written down. All of the 1PI two-loop Feynman diagrams are

written down, including diagrams with vertices with an odd number of scalars. Illustra-

tive example Feynman graphs are computed explicitly in position space. These results are

compared with the preceding string theory results and exact agreement is obtained for the

1PI diagrams.

An example application is given: the computation of the β function of scalar QED at

two loops with the same methods, leading to the same result as found in the literature.
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Chapter 1

Introduction

As has been known since the early days of string theory [2, 3], in the limit of vanishing

string length (or infinite tension) α′ → 0, the theory can be approximated by a low-energy

effective theory of (super) Yang-Mills coupled to Einstein gravity.

In this thesis, we establish that the correspondence holds not only at the level of

the full amplitude, but even diagram-by-diagram, with the contributions associated with

the various quantum fields being identifiable on the string theory side. To make the

correspondence, we need to use a particular parametrization of (super) moduli space known

as Schottky groups, which have been in use since the very early days of string theory [4, 5, 6]

and set on a more rigourous footing in the 1980s [7, 8, 9, 10]. On the quantum field theory

(QFT) side, we need to use a particular non-linear gauge condition first written down by

Gervais and Neveu in [11].

String theories have been a source of useful insights about gauge theories [12, 13, 14, 15]

and we discuss, in particular, the calculation of the Euler-Heisenberg effective action for

scalar QED using string-based techniques as in [16].

The structure of the thesis is as follows: in Chapter 2 we recall some aspects of the

construction of string theories, starting with bosonic strings and then superstrings in the

Ramond-Neveu-Schwarz formalism. We discuss various aspects of quantization, such as the

construction of the worldsheet Faddeev-Popov (b, c) ghost system and BRST quantization.

We show how (super) Riemann surfaces are constructed with the use of (super) Schottky

groups, and as an example of the use of super Schottky groups, we give some details of the

calculation of the one-loop correction to the gluon two-point function from string theory.

In chapter 3, we discuss how a constant background U(1) gauge field can be incorpo-

rated into string theory by giving non-trivial monodromies to the worldsheet fields, and

we calculate the determinant of the super Prym period matrix, which is an important

ingredient for the two loop amplitudes we calculate in the following chapter.

In chapter 4, we discuss the model we use as a ‘laboratory’ to examine the corre-

spondence, namely a stack of N parallel separated D3-branes with constant U(1) gauge

fields on their worldvolume. We show how to calculate the two-loop vacuum amplitude

in this context. We then discuss how to find the α′ → 0 limit in way that makes the

diagram-by-diagram matching with QFT completely manifest.

In Chapter 5, we find the lagrangian for the Yang-Mills theory which corresponds to
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the low-energy effective theory of our setup, and then we calculate all of the two-loop 1PI

vacuum diagrams. We show how all of them match terms in the Schottky group expansion

of the string theory amplitude in the previous Chapter.

In Chapter 6, we discuss how the correspondence can be used as a tool for investigation

QFT effective actions, and as an example we discuss how the two loop Callan-Symanzik

β function for scalar QED would be studied with our approach. We finish with Chapter

7 which discusses forthcoming work and possible generalizations of the research we’ve

undertaken.
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Chapter 2

Multiloop calculations in

Superstring theory

In this chapter we make extensive use of the textbooks [17, 18, 19] and the lecture notes

[20, 21].

An account of the historical development of, and motivation for string theory is given

in [22].

String theory evolved originally from a 4-point scattering amplitude written down

by Veneziano [23] constructed to satisfy the properties of crossing symmetry and of being

expressible as a sum of poles in either the s-channel or the t-channel (but not both channels

simultaneously) [24]. The expression was quickly generalized to an arbitrary number of

external states (see the early reviews [25, 26] and references therein). It was realized

soon by a number of authors that the scattering amplitudes described the dynamics of

relativistic strings ([27] and references therein).

2.1 Classical bosonic strings and superstrings

2.1.1 Classical point particles

To guide our analysis of quantum strings, we begin with the much simpler but in some

ways analogous case of the point particle. Classically, the Lorentz-invariant action for a

point-like scalar particle of mass m is simply m times the relativistically-invariant length

of the worldline:

S = −m
∫

dτ

√
ηµν

∂Xµ

∂τ

∂Xν

∂τ
, (2.1)

where τ is a co-ordinate on the worldline of the particle (see Fig. 2.1a), and Xµ(τ) is

the embedding function giving the particle’s position in spacetime. Eq. (2.1) has the

property of being invariant under reparametrizations of the worldline τ → τ ′, but since it

is proportional to m it vanishes identically for massless particles. This can be remedied
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τ

(a)

σ

τ

(b)

Figure 2.1: Co-ordinates on the worldline of a particle and the worldsheet of a string.

by introducing another worldline field e(τ); then introducing the action

S = −1

2

∫
dτ
( 1

e(τ)

∂Xµ

∂τ

∂Xν

∂τ
ηµν +m2 e(τ)

)
. (2.2)

To find the classical equations of motion (e.o.m.), this must be extremized with respect

to the variations e→ e+ δe and Xµ → Xµ + δXµ, yielding

∂Xµ

∂τ

∂Xν

∂τ
ηµν − e2m2 = 0 (2.3)

and

∂

∂τ

(1

e

∂Xν

∂τ

)
= 0 , (2.4)

respectively. Now, Eq. (2.2) is still invariant under an arbitrary reparametrization τ → τ̃ ,

so long as e(τ) transforms as e(τ̃) =
(
∂τ̃
∂τ

)−1
e(τ). We can use this redundancy to choose

τ such that e(τ) ≡ 1, then the e.o.m. Eq. (2.4) take on the same form as those for the

original action Eq. (2.1) with τ as the proper time. Because of this we say that the actions

are ‘classically equivalent’.

2.1.2 Classical bosonic strings

The first attempt at writing down the action for a free bosonic string involved the natural

generalization of Eq. (2.1), namely, it was proportional to the Lorentz-invariant “area”

of the two-dimensional surface traced out by the one-dimensional string as it propagated

through spacetime, multiplied by the tension of the string [28]. We can parametrize the

1-dimensional string by a coordinate σ and let the two-dimensional surface traced out by

the string, i.e. the worldsheet Σ, be parametrized by σ and another coordinate τ as in

Fig. 2.1b. Then the action is given in terms of the pullback (or ‘induced’) metric by the

Nambu-Goto action: if we let
√
−a denote

√
−det a for any bilinear form a, then

SNambu-Goto = −T
∫

dτ dσ
√
−γ ; γαβ =

∂Xµ

∂σα
∂Xν

∂σβ
ηµν (2.5)

where T ≡ 1
2πα′ is the string tension, and σ0 ≡ τ ; σ1 ≡ σ. This is difficult to quantize

because of the square root, so as we did in the point particle case, we introduce a new
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field hαβ(σ, τ) and define the action [29]

Sbos = −T
2

∫
dσ dτ

√
−hhαβ∂αXµ∂βX

νηµν . (2.6)

To see that Eq. (2.6) is classically equivalent to Eq. (2.5), we can impose the principle of

stationary action with respect to hαβ. The variation of Sbos can be found with the aid of

the Jacobi rule for the variation of a determinant, δ
√
−h = −1

2

√
−hhαβδhαβ, yielding

δSbos = −T
2

∫
dσ dτ

√
−h
(
− 1

2
hγδh

αβ + δαγ δ
β
δ

)
δhαβ∂αX

µ∂βX
νηµν . (2.7)

Customarily, we write [17]

TXαβ ≡ −
4πα′√
−h

δSbos

δhαβ
(2.8)

=
(
− 1

2
hαβh

γδ + δγαδ
δ
β

)
∂γX

µ∂δX
νηµν , (2.9)

so the vanishing of the variation of the action with respect to hαβ can be imposed by

the constraint TXαβ = 0. TXαβ is called the stress-energy tensor for Xµ, since its definition

matches that in general relativity. TXαβ vanishes, i.e. the equations of motion are satisfied,

whenever hαβ is proportional to the pullback metric up to rescaling:

hαβ(σ, τ) = Ω(σ, τ) ∂αXµ∂βXνηµν ⇒ δSbos

δhαβ
= 0 . (2.10)

Inserting this expression for hαβ into Sbos, we retrieve the Nambu-Goto action Eq. (2.5)

as expected.

In fact, the rescaling in Eq. (2.10) is not just a symmetry of the classical solutions but

a symmetry of the action Eq. (2.6) called Weyl invariance [29], under which hαβ can be

locally rescaled:

hαβ(σ, τ)→ eφ̃(σ,τ)hαβ(σ, τ) . (2.11)

TXαβ is automatically traceless due to Weyl invariance. To see this, we consider an infinites-

imal Weyl symmetry hαβ → (1− δλ)hαβ, then [30]

TαXα = TXαβh
αβ = − 4π√

−h
δSbos

δhαβ
δhαβ

δλ
= − 4π√

−h
δSbos

δλ
= 0 (2.12)

where we’ve used the fact that the Weyl transformation affects Sbos only via hαβ.

It can be readily seen that the action Eq. (2.6) is also invariant under reparametrization

of the worldsheet. To derive constraints, we need to consider infinitesimal diffeomorphisms.

Consider a vector field εξα which deforms the co-ordinates as σα → σα + εξα, then to first

order in ε, the variation of tensors on the worldsheet is given by the Lie derivative Lξ with

respect to ξ [31]. The fields transform as [17, 32, 31]

Xµ → Xµ + εLξ(Xµ) = Xµ + εξα∂αX
µ ;
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hαβ → hαβ + εLξ(hαβ) = hαβ + ε∇αξβ + ε∇βξα , (2.13)

to order O(ε2). ∇α is the Levi-Civita connection which is symmetric and satisfies ∇ξhαβ =

0, given in terms of Christoffel symbols by [32]

∇αξβ = ∂αξβ − Γγαβ ξγ ; Γγαβ =
1

2
hγδ(∂αhβδ + ∂βhαδ − ∂δhαβ) (2.14)

To find the equation of motion, we can make a convenient choice for hαβ using

Eq. (2.13) and Eq. (2.11) to put it in the form

hαβ(σ, τ) = eφ(σ,τ)ηαβ . (2.15)

It is always possible to choose coordinates for which eφ ≡ 1 locally, but there are topological

obstructions for more complicated worldsheets. In the gauge Eq. (2.15), the action becomes

Sconf = −T
2

∫
dσ dτ ∂αXµ∂αX

ν ηµν , (2.16)

from which it’s easy to see that the e.o.m. for Xµ is the wave equation ∂α∂αX
µ = 0. More

generally, the e.o.m. can be written in terms of the Laplacian ∆ as [33]

∆Xν = 0 ; ∆ ≡ − 1√
−h

∂α

(√
−hhαβ∂β ·

)
. (2.17)

Note that the action is independent of the overall factor eφ appearing in Eq. (2.15),

corresponding to the Weyl symmetry. It follows from diffeomorphism invariance that Tαβ

is covariantly conserved whenever the e.o.m. for Xµ are satisfied. To see this, we consider

the variation of Eq. (2.6) under a reparametrization generated by the vector field ξα, so

Xµ and hαβ vary according to Eq. (2.13). Since we know that this is a symmetry of S,

we have

0 = δS =
δS

δXµ
δXµ +

δS

δhαβ
δhαβ (2.18)

= − 1

2πα′

∫
dτ

∫
dσ
√
−hTαβX ∇αξβ , (2.19)

where we’ve used δS
δXµ = 0 and inserted the expression for Tαβ in Eq. (2.8) and the

expression for δhαβ in Eq. (2.13). Partially integrating the covariant derivative on the

right-hand side of Eq. (2.19) we get

∇αTαβX = 0 , (2.20)

where the covariant derivative of a tensor with two upper indices is given by

∇λTαβ = ∂λT
αβ + ΓαγλT

γβ + ΓβγλT
αγ . (2.21)

The action Eq. (2.6) enjoys a conformal symmetry following from Weyl invariance
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Eq. (2.11) and reparametrization invariance. A conformal transformation is a diffeomor-

phism σα 7→ σ′α = fα(σ) such that the metric is unchanged only up to the action of a

Weyl transformation, ds′2 = Ω(σ)ds2. In terms of an infinitesimal conformal transforma-

tion with fα(σ) = σα + εξα and Ω(σ) = 1 + εκ, to first order in ε we have

κhαβ = hλβ ∂αξ
λ + hαλ ∂βξ

λ + ξλ∂λhαβ , (2.22)

which is the conformal Killing equation [34]. The right-hand side can be written in terms

of the connection as ∇αξβ +∇βξα or in terms of the Lie derivative as Lξ(hαβ). For κ = 0

it is just the Killing equation for isometries. Taking the trace of both sides by multiplying

with hαβ, we get 2κ = 2∇αξα, which we can substitute back into Eq. (2.22) obtaining

P1(ξ)αβ ≡ ∇αξβ +∇βξα − hαβ∇λξλ = 0 . (2.23)

Here we’ve defined the operator P1 which maps vectors fields to traceless symmetric ten-

sors; its kernel it the space of conformal killing vectors [33, 35, 36].

In conformal coordinates we have:

P1(ξ) = hλβ ∂αξ
λ + hαλ ∂βξ

λ − hαβ ∂λξλ = 0 . (2.24)

Vector fields satisfying this equation generate symmetries of the string action in conformal

gauge, Eq. (2.16). Multiplying both sides of Eq. (2.24) by ∂α = hαγ∂γ , we see that the

terms proportional to ∂γφ all cancel since they are just proportional to Eq. (2.24), two of

the remaining terms cancel and we are left with

∂α∂αξβ = 0 . (2.25)

We also need to introduce boundary conditions in the σ direction. In the case of a

closed string, topologically a circle, we customarily let the domain of σ be [0, 2π] so we

typically impose the boundary condition Xµ(σ + 2π, τ) = Xµ(σ, τ) to ensure that Xµ is

single valued (although this is not necessarily true, for example, when the target space is

an orbifold, Xµ is only single-valued modulo the action of a discrete group [37]).

Alternatively, the string can have the topology of a line interval; in this case we let σ

range over σ ∈ [0, π]. In this case, when we vary Xµ we pick up a boundary contribution:

δSbos = −T
∫ ∞
−∞

dτ
[
∂σXµδXν

]σ=π

σ=0
ηµν + T

∫ ∞
−∞

dτ

∫ π

0
dσ δXµ∂α∂

αXνηµν , (2.26)

where we’ve assumed that δXµ(σ,±∞) → 0. Therefore for the action to be stationary,

we need not only the equation of motion ∂α∂
αXµ = 0, but also conditions to be met at

the boundary. We can choose either

δXµ
∣∣∣
σ=0,π

= 0 or ∂σXν
∣∣∣
σ=0,π

= 0 ; (2.27)

the first choice, in which Xµ is fixed at the endpoint, is called a Dirichlet boundary
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condition; the second choice is called a Neumann boundary condition. The two endpoints

can have their boundary conditions chosen independently.

We will typically work with a Euclideanized worldsheet action by Wick rotating τ →
−i τ so the worldsheet metric has signature (+,+). The metric Eq. (2.15) becomes hαβ =

eφδαβ and it is useful to introduce the complex coordinates

z =
τ + iσ√

2
; z =

τ − iσ√
2

, (2.28)

so z = z∗. The derivatives transform as

∂τ =
1√
2

(∂ + ∂) ; ∂σ =
i√
2

(∂ − ∂) , where ∂ ≡ ∂

∂z
; ∂ ≡ ∂

∂z
. (2.29)

The diagonal components of the metric in this basis vanish: we have

hzz = 〈∂, ∂〉 =
1

2
eφ〈∂τ − i∂σ, ∂τ − i∂σ〉 = 0 (2.30)

and similarly hzz = 0, while

hzz = 〈∂, ∂〉 =
1

2
eφ〈∂τ − i∂σ, ∂τ + i∂σ〉 = eφ = hzz , (2.31)

so the metric has the form

hzz = hzz = eφ(z,z) ; hzz = hzz = 0 . (2.32)

The trace of TXαβ in these coordinates is therefore equal to

TXαβh
αβ = 2e−φTXzz = 0 , (2.33)

i.e. TXαβ has been diagonalized. The Christoffel symbols for Eq. (2.32) can be calculated

from Eq. (2.14); all vanish except

Γzzz = ∂φ ; Γzzz = ∂φ . (2.34)

The z component of the conservation equation Eq. (2.20) then becomes

0 = ∇αTαzX = ∂T zzX + 2∂φT zzX (2.35)

= e−2φ∂(e2φT zzX ) = e−2φ∂(hzzhzzT
zz
X ) = e−2φ∂(hzαhzβT

αβ
X ) = e−2φ∂ TXzz ,

so ∂TXzz = 0, i.e. TXzz is anti-holomorphic (at least away from other operator insertions

[20]). Similarly, from the z component of Eq. (2.20) we see that ∂TXzz = 0, so TXzz is

holomorphic. Using the fact that this implies TXzz (z, z) has only trivial dependence on z,

and similarly that TXzz (z, z) has only trivial dependence on z, we write

TX(z) ≡ TXzz (z, z) ; T
X

(z) ≡ TXzz (z, z) . (2.36)
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In these coordinates, the string action has the form

Sbos = T

∫
dz dz ∂Xµ ∂Xν ηµν . (2.37)

where a factor of i from the Wick rotation has been absorbed to keep the action positive-

definite. The action is unchanged by a coordinate transformation of the form

z 7→ z′ = f(z, z) ; z 7→ z′ = f(z, z)∗ , where ∂f(z, z) = 0 . (2.38)

i.e. a holomorphic change of coordinates. From this point onwards, we will write a holomor-

phic function as f(z), as though we are treating z and z as separate variables. Eq. (2.37)

has the e.o.m. ∂∂Xµ = 0 whose general solution is a sum of arbitrary ‘left-moving’ holo-

morphic and ‘right-moving’ anti-holomorphic parts

Xµ(z, z) = Xµ
L(z) +Xµ

R(z) . (2.39)

In these coordinates with the metric Eq. (2.32), the conformal killing vectors can be

found from Eq. (2.24); from α = β = z we get ∂ξz = 0 so ξz is anti-holomorphic and from

α = β = z we get ∂ξz = 0 so ξz is holomorphic, while from α = z, β = z we get ∂ξz = ∂ξz.

The Noether currents associated to conformal transformations can be expressed in

terms of the stress-energy tensor TX(z), T
X

(z). To see this, we begin by considering an

infinitesimal diffeomorphism σα 7→ σα+ε ξα(σ), not in general a reparametrization because

it’s not accompanied by a corresponding change in the metric δhαβ = ε(∇αξβ + ∇βξα).

We know that the action Eq. (2.37) is unchanged by a reparametrization, which means

that the action will change under an infinitesimal diffeomorphism by minus the change

in the action coming from the change in the metric which would be required to make

the infinitesimal diffeomorphism a reparametrization. Therefore, the change in the action

coming from the infinitesimal diffeomorphism σα 7→ σα + ε ξα(σ) will be equal to the

change in the action coming from making no change to the coordinates but deforming the

metric by hαβ 7→ hαβ − ε(∇αξβ +∇βξα). We can write the change in the action coming

from a change in the metric in terms of the stress-energy tensor, thanks to Eq. (2.8). The

deformation of the inverse metric can be written in terms of the deformation of the metric

via δhαβ = −hαγhβδδhαβ = ε(hαγ∇γ ξβ + hβδ∇δ ξα). The deformation of the action is

given, then, by

δS =
1

2πα′

∫
d2σ
√
hTXαβ ε h

αγ∇γ ξβ , (2.40)

where we’ve used the symmetry of TXαβ. In terms of the complex coordinates in Eq. (2.28)

with the conformal-gauge metric Eq. (2.32), this can be written as

δS =
1

2πα′

∫
d2z ε(TX∂ξz + T

X
∂ξz) , (2.41)

where the scaling factors from the inverse metric hαγ and from
√
h have cancelled out,
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we’ve used TXzz = 0, and we’ve used that ∇zξz = ∂ξz and ∇zξz = ∂ξz since the Christoffel

symbols vanish (Eq. (2.34)).

Treating z and z as independent coordinates, we may vary them independently, so we

may set e.g. ξz = f(z, z) and ξz = 0. In this case we get from Eq. (2.41) that

δS = ε

∫
d2z Jα∂αf(z, z) ; where Jz(z, z) = 0 and Jz(z, z) =

1

2π
TX(z) , (2.42)

i.e. T (z) is the conserved current associated to translations in z. But more generally,

we can find infinitely many conserved currents: if we multiply f(z, z) by an arbitrary

holomorphic function h(z), then it passes through ∂ in Eq. (2.41) and we get the conserved

current

Jzh(z, z) = 0 ; Jzh(z, z) =
1

2π
TX(z)h(z) , (2.43)

which is holomorphic. Similarly, by setting ξz = 0 and ξz = h̃(z)f(z, z) we get an anti-

holomorphic conserved current J h̃(z, z) with J
z
h̃(z, z) = 1

2πα′T
X

(z)h̃(z) and J
z
h̃(z, z) = 0.

The two components of TXαβ for the Xµ fields given by Eq. (2.9) can be written down

in complex coordinates as

TX(z) = − 1

α′
∂Xµ∂Xνηµν ; T

X
(z) = − 1

α′
∂Xµ∂Xνηµν . (2.44)

The coordinates Eq. (2.28) range over Re(z) ∈ R and Im(z) ∈ [0, π√
2
] for open strings

and [0,
√

2π] for closed strings. It is conventional to change coordinates to

z 7→ z′ = e
√

2z ; z 7→ z′ = e
√

2z , (2.45)

which is a holomorphic change of coordinates so the action Eq. (2.37) is unchanged. For

open strings, the boundary σ = 0 is mapped to the positive real axis z′ = Re(z′) > 0 and

the boundary σ = π is mapped to the negative real axis z′ = Re(z′) < 0. The interior of

the string is mapped onto the upper-half plane H = {x + i y|(x, y) ∈ R2; y > 0}. Closed

strings, for which σ ∈ [0, 2π), are mapped onto the whole complex plane. τ is mapped

onto the radial coordinate |z′| = eτ ; the far future and past τ → ±∞ are mapped onto

z′ = ∞ and z′ = 0. Constant τ slices of the worldsheet are mapped onto circles with

constant |z′|.

2.1.3 Riemann surfaces

In fact, let us relax our original assumption that the worldsheet has the topology of a

strip, and assume only that it is a surface, possibly with boundaries corresponding to

the endpoints of open strings. A priori it could be a non-orientable surface (although

we will see that the Type II superstring theories we are interested in contain only ori-

entable worldsheets). Any orientable two-dimensional Riemannian manifold Σ (i.e. a

surface with a Riemannian metric) has an almost complex structure, i.e. a tensor Jm
n

satisfying Jm
nJn

p = −δpm; it is given by Jm
n =
√
hεmph

pn where εmp is the antisymmetric
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Figure 2.2: The double of a bordered Riemann surface.
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Figure 2.3: A basis for the first homology group on a compact Riemann surface.

symbol with ε12 = 1 [38, 39]; since the surface is two dimensional this is always integrable

to a complex structure [38, 40].

In the case that the surface has no boundary, it is therefore a Riemann surface, i.e. a

manifold of real dimension 2 which can be covered by complex coordinate charts whose

transition functions are holomorphic [41, 42]. A function on a Riemann surface is holomor-

phic if it is holomorphic in a coordinate chart. Two Riemann surfaces are identified if there

is a biholomorphic mapping between them. Since holomorphic transformations do not in

general preserve a metric, there is no intrinsic metric on a Riemann surface. Riemann

surfaces are a natural setting in which to consider the string action Eq. (2.37); the expres-

sion is unchanged by holomorphic changes of coordinates and therefore the integrand is

globally well-defined.

Two dimensional surfaces with a complex structure and a boundary are called bordered

Riemann surfaces by mathematicians [43, 44]. They are locally biholomorphic to the upper

half plane H ≡ {z = x + i y ∈ C|y ≥ 0}. To every bordered Riemann surface Σ we can

associate a double surface Σ [6, 38]; this is defined by taking two copies of the surface and

replacing each chart on the second copy with its complex conjugate, which maps points

into the lower half plane, and then identifying corresponding points on the borders of the

two bordered Riemann surfaces (see Fig. 2.2). The map I : Σ→ Σ∗ taking each point to

its copy lifts to an anti-conformal involution on Σ whose fixed point set is the border.

To help us describe a compact Riemann surface Σ of genus g, we introduce a basis for

its first homology group H1(Σ,Z) ∼= Z2g (which is the abelianization of its fundamental

group). This is a set of 2g equivalence classes of curves aµ and bµ for µ = 1, . . . , g such

that no two ai cycles and no two bi cycles intersect each other, and that ai intersects bj

once if and only if i = j (see Fig. 2.3. We can make this precise with the introduction of

an anti-symmetric intersection form [35] (·, ·) : H1(Σ,Z) × H1(Σ,Z) → Z which counts

the number of times the two curves intersect, with an opposite sign for oppositely oriented

intersections.

There is a notion of a complex line bundle over a Riemann surface, that is, a 2-

dimensional complex manifold E with a holomorphic projection map π : E → Σ such that

π−1 of every point on Σ is a copy of C [45]. For an open neighbourhood U on Σ there is

a local trivialization, i.e. π−1(U) is holomorphically equivalent to U ×C. Roughly, E is
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a family of one-dimensional vector spaces varying holomorphically on Σ. Under pointwise

tensor product of vector spaces, the holomorphic line bundles on Σ form a group called

the Picard group; the inverse of a line bundle is the dual bundle and the identity is the

trivial line bundle, i.e. the ring of meromorphic functions on Σ.

Line bundles can also be described in terms of equivalence classes of divisors: for a

section1 s of a line bundle ξ → Σ with nith-order poles at finitely many points Pi and

mjth-order zeroes at finitely-many points Qj , the divisor of s is the formal sum div(s) =∑
i niPi −

∑
jmjQj , and its degree is given by deg(div(s)) =

∑
i ni −

∑
j nj . Multiplying

the section s by an arbitrary meromorphic function, we can get any other section s′ of ξ

which may have different poles and zeroes from s with different multiplicities, however,

because meromorphic functions have the same number of poles and zeroes, deg(div(s′)) =

deg(div(s)). Two divisors on Σ are in the same divisor class if they have the same degree,

and there is a one-to-one correspondence between divisor classes and line bundles [35]. The

space of holomorphic line bundles of degree D on Σ is called the Picard variety PicD(Σ).

The cotangent bundle of Σ can be decomposed as T ∗Σ = T ∗(1,0)Σ ⊕ T ∗(0,1)Σ where

T ∗(1,0)Σ and T ∗(0,1)Σ are the line bundles whose local trivializations are spanned by dz

and dz, respectively [46]; these are well-defined because the transition functions on Σ

are holomorphic. T ∗(1,0)Σ is a holomorphic line bundle called the canonical bundle and

written K. There is a g-dimensional vector space of sections of K which are locally of the

form ωµ = fµ(z)dz where fµ is holomorphic, called abelian differentials of the first kind

[46].

We can decompose any tensor bundle on Σ into a direct sum of line bundles. Given

a tensor C on Σ, pick local coordinates and a metric of the form Eq. (2.32), then each

component of C will have a certain number of upper and lower z and z indices. We can

use the metric to lower or raise upper or lower z indices to lower or upper z indices,

respectively [47]. Then if a component Cz···zz···z has n+ upper z indices and n− lower z

indices then it transforms under a map z 7→ z′ as [48, 47]

Cz···zz···z → Cz
′···z′

z′···z′ =

(
∂z′

∂z

)n+−n−
Cz···zz···z . (2.46)

The set of objects which transform like Eq. (2.46) with n+ − n− = n is a line bundle

which is denoted Kn, and is equal to K⊗n in the Picard group of Σ [35]. Although we

used a metric to remove the z indices, the line bundle decomposition of the components

only depends on the off-diagonal structure of the metric, which is the same for all metrics

compatible with the complex structure.

Rotations in the (co)tangent spaces correspond to multiplication by complex phases:

dz → eiθdz, ∂ → e−i θ∂. The rank of a tensor is therefore characterized by its helicity : a

section C of Kn transforms under rotation by θ as [47, 33]

C → exp(inθ)C . (2.47)

If C is a tensor in K n then hzz∂zK is a tensor in K n+1. Motivated by this, we can define

1recall that a section of a fibre bundle π : E → B is a map s : B → E such that π ◦ s = id.
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covariant derivatives [47, 39] (with the sign for ∇zn opposite from [35])

∇zn : K n → K n+1 , ∇nz : K n → K n−1 , (2.48)

C 7→ hzz ∂ C ; C 7→ (hzz)n∂
[
(hzz)

nC
]
. (2.49)

The action of ∇nz on the helicity decomposition of a tensor is equivalent to the action of

the Levi-Civita connection ∇z on the tensor. Formally, the two operators in Eq. (2.48)

are the adjoints of each other with respect to an inner product on K n [47]:

(∇zn)† = −∇n+1
z ; 〈C1, C2〉n =

∫
d2z
√
−h(hzz)

nC∗1C2 . (2.50)

The unique genus 0 Riemann surface is called the Riemann sphere; it can be con-

structed as the one-dimensional complex projective space CP1 obtained by quotienting

the homogenous coordinates (z1, z2) ∈ C2 \ {0, 0} by the equivalence relation (z1, z2) ∼
(λz1, λz2) for λ ∈ C∗ ≡ C \ {0} = GL(1,C). The automorphisms of the Riemann sphere

can be written as invertible linear transformations of the homogeneous coordinates:(
z1

z2

)
7→

(
z′1
z′2

)
=

(
a b

c d

)(
z1

z2

)
; ad− bc 6= 0 . (2.51)

Since we can scale all of (a, b, c, d) by an overall factor and get the same map on CP1, we

are free to choose e.g. ad − bc = 1; the group of these transformations is the projective

special linear group PSL(2,C). CP1can be covered by two coordinate charts: for z2 6= 0

we can use (z1, z2) 7→ z = z1/z2 ∈ C and for z1 6= 0 we can use (z1, z2) 7→ w = z2/z1 ∈ C.

In terms of the co-ordinate z, Eq. (2.51) takes the form

z 7→ z′ =
az + b

cz + d
, (2.52)

called a Möbius transformation or a fractional linear transformation.

Every compact Riemann surface Σ of genus g has a simply-connected universal covering

surface Σ̃ such that Σ = Σ̃/Γ where Γ is a group of Möbius transformations (this is called

the ‘uniformization theorem’) [41]. Σ̃ is either the Riemann sphere if g = 0, the complex

plane C if g = 1, or the upper-half plane H if g ≥ 2. For g ≥ 2, the Möbius transformations

in Γ have to leave the boundary of H, i.e. the real line R, fixed; therefore the entries in

the Möbius map must be real; a group of Möbius maps all satisfying this property is

called Fuchsian [49]. For g ≥ 1, choosing a fundamental domain for the action of Γ (i.e. a

connected subset of Σ̃ containing one representative of each equivalence class of Γ) allows

us to find a single coordinate z covering all of Σ.

One way to construct a fundamental domain is by fixing a point P on Σ and finding

a set of 2g curves on Σ equivalent to the canonical homology basis which start and end

at P , with no intersections anywhere except P (see Fig. 2.4a for g = 2), and then ‘cut Σ

open’ along the curves, obtaining topologically a polygon with 4g edges (see Fig. 2.4a for

g = 2). The cutting procedure for g = 2 is shown step-by-step in Fig. 12 of [39]. Any

of the lifts of the polygon to Σ̃ is a fundamental domain for Γ; in this case it is called a
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Figure 2.4: Cutting open a g = 2 surface to find a fundamental polygon.

fundamental polygon [50]. Γ is isomorphic to the fundamental group π1(Σ, P ). Because of

the existence of the fundamental polygon, the homotopy class a−1
1 b−1

1 a1b1 · · · a−1
g b−1

g agbg

is contractible, and therefore π1(Σ, P ) has a non-trivial group relation.

Given any basis {φi} of abelian differentials with periods around the ai cycles given

by (τa)ij =
∫
ai
φj , we can find a basis {ωi} given by ωi = (τ−1

a )ijφj which is dual to the ai

cycles; we can then use the integrals of ωi around the b-cycles to define the period matrix

τij : ∫
ai

ωj = δij ;

∫
bi

ωj = τij . (2.53)

τij is symmetric and has positive-definite imaginary part. These statements can be proved

by considering area integrals over the fundamental polygon and equating them by Stokes’

theorem to integrals over the homology cycles; the first follows by integrating ωi∧ωj which

is a total derivative and the second follows by integrating η ∧ η = −2 i |h|2dx ∧ dy where

η(z) = h(z)dz =
∑g

i=1 ciωi(z) is some abelian differential [50, 35].

Given a Riemann surface Σ with a choice of homology basis, we can define the jacobian

torus in terms of the period matrix τij [35]:

J(Σ) ≡ Cg/Lτ ; Lτ ≡ {(τ · ~n) + ~m |~n, ~m ∈ Zg} = Zg + τ Zg . (2.54)

J(Σ) has a natural complex structure. After choosing an arbitrary base point p0 on Σ, we

can define a map (the Jacobi map) [35]

Φi
p0 : Σ→ J(Σ) ; p 7→

∫ p

p0

ωi . (2.55)

The ϑ-function is a section of a holomorphic line bundle E → J(Σ) given by the

formula

ϑ(~z; τ) ≡
∑
~n∈Zg

exp
(
iπ~n · τ · ~n+ 2πi~n · ~z

)
. (2.56)

The ϑ function with characteristics is given by

ϑ
[ ~a
~b

]
(~z; τ) ≡

∑
~n∈Zg

eiπ(~n+~a)·τ ·(~n+~a)+2πi (~n+~a)·(~z+~b) (2.57)
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= eiπ~a·τ ·~a+2πi~a·(~z+~b) ϑ(~z + τ · ~a+~b ; τ) . (2.58)

Its behaviour under translations in Lτ of its argument or its characteristics is given by:

ϑ
[ ~a
~b

]
(~z + τ · ~n+ ~m ; τ) = e−iπ~n·τ ·~n−2πi(~z+~b)+2πi~a·~m ϑ

[ ~a
~b

]
(~z ; τ) , (2.59)

ϑ
[ ~a+ ~m
~b+ ~n

]
(~z ; τ) = e2πi~n·~m ϑ

[ ~a
~b

]
(~z ; τ) . (2.60)

There is a function which is well-defined on the cut surface

f(p) = ϑ(~z + ~Φp0(p) ; τ) ; (2.61)

according to the Riemann vanishing theorem either f(p) = 0 for all p ∈ Σ or f has g

zeroes pi satisfying

~z +

g∑
i=1

~Φp0(pi) = ~∆p0 (2.62)

where the vector of Riemann constants ~∆p0 ∈ J(Σ) is independent of ~z [35].

From the Riemann vanishing theorem, it follows that any meromorphic function on Σ

may be written in terms of its divisor D = z1 + . . .+ zd − w1 − . . .− wd as [20]:

fD(p) =

d∏
i=1

ϑ(~ζ + ~Φzi(p) ; τ)ϑ(~ζ + ~Φwi(p) ; τ)−1 , (2.63)

where ~ζ ∈ J(Σ) is any point such that ϑ(~ζ ; τ) = 0; fD is independent of ~ζ.

A spin bundle on a Riemann surface is a line bundle whose square is the canonical

bundle K. A section s of the spin bundle lifts to a section s̃ of the trivial bundle on the

covering surface Σ̃ which transforms under the action of the covering group Γ as s◦T = ±s
depending on the ‘spin structure’ associated to a homology cycle T [46, 35].

We can define the prime form [44] which is a holomorphic (−1/2, 0) × (−1/2, 0)-

differential on Σ× Σ given by [20]:

E(z, w) ≡
ϑ[ ~a~b ]

( ∫ z
w ~ω ; τ

)
h

[~a~b
]
(z)h

[~a~b
]
(w)

, h
[~a~b

]
(z) =

( g∑
i=1

∂

∂ζi
ϑ[ ~a~b ]

(
~ζ ; τ

)∣∣∣
ζi=0

ωi(z)
) 1

2
, (2.64)

where [ ~a~b ] is any odd half-characteristic, i.e. ai, bi ∈ {0, 1
2} and 4~a · ~b is odd. E(z, w)

is odd under swapping its arguments and its limiting behaviour is given by E(z, w) ∼
(z−w)(dz)−

1
2 (dw)−

1
2 as z → w [51]. E(z, w) picks up a minus sign as z or w move around

an ai cycle; as z moves around the homology cycle bi, E(z, w) changes as [20]

E(z, w)→ exp
[
− πiτii − 2πi

∫ w

z
ωi
]
E(z, w) . (2.65)
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2.1.4 The classical Ramond-Neveu-Schwarz superstring

The bosonic string action Eq. (2.6) can be extended to be supersymmetric on the world-

sheet. We need to introduce spinors on the worldsheet, so we need a representation ρα of

the Clifford algebra satisfying {ρα, ρβ} = −2ηαβ, where we will use a Lorentzian metric

with signature (−+) at first. In string theory there is variation in the sign convention for

the Clifford algebra; we follow [32, 17, 52] and differ from [18, 53, 54]. A suitable basis

can be constructed from the Pauli matrices τ i:

ρ0 = τ2 =

(
0 −i

i 0

)
; ρ1 = i τ1 =

(
0 i

i 0

)
; (2.66)

they are chosen to be imaginary so that the Dirac operator will be real. The chirality

matrix is diagonal ρ3 = ρ0ρ1 = τ3, so the two components of a spinor have opposite

chirality:

P± =
1∓ ρ3

2
; P−χ =

(
χ−

0

)
P+χ =

(
0

χ+

)
. (2.67)

where the projection operators are idempotent P 2
± = P±. The sole generator of spin(1, 1)

is ρ01 ≡ 1
2 [ρ0, ρ1] is equal to the chirality operator ρ01 = ρ3; vectors transform under boosts

as

vαρα 7→ v′
α
ρα = exp(

θ

2
ρ01)vαρα exp(−θ

2
ρ01) (2.68)

which is the same as setting

v0 + v1 7→ eθ(v0 + v1) ; v0 − v1 7→ e−θ(v0 − v1) ; (2.69)

i.e. the vector representation is not irreducible but splits into two representations of op-

posite chirality. Spinors transform under the same boost by χ→ χ′ = e
θ
2
ρ01χ, so the two

components transform as

χ+ → χ′+ = e
θ
2χ+ ; χ− → χ′− = e−

θ
2χ− . (2.70)

The worldsheet action for a superstring can be obtained from the action for the bosonic

string in conformal gauge Eq. (2.16) by adding a Dirac term for a worldsheet Majorana-

Weyl spinor ψ; we set [55, 32]

S = − 1

4πα′

∫
dσ dτ

(
∂αX

µ∂αXν − iψ
µ
ρα∂αψ

ν
)
ηµν , (2.71)

where the conjugate Majorana spinor is defined as

ψ ≡ ψtρ0 = (−iψ+ iψ−) . (2.72)
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Using

−iψ
µ
ρα∂αψ

ν = −iψµ+∂−ψ
ν
+ − iψµ−∂+ψ

ν
− ; ∂± ≡ ∂0 − ∂1 , (2.73)

we can rewrite the action (Eq. (2.71)) as

S =
1

4πα′

∫
dσ dτ

(
∂+X

µ∂−X
ν + iψµ+∂−ψ

ν
+ + iψµ−∂+ψ

ν
−
)
ηµν . (2.74)

The equations of motion and boundary conditions for Xµ are the same as for the bosonic

string. To find the equations of motion for the fermionic fields ψ±, we vary them as

ψ± → ψ± + δψ±. Let us consider the open string so σ ∈ [0, π]. After integrating by parts

so all derivatives are on ψ± instead of δψ±, we find

δS =
i

2πα′

∫ ∞
−∞

dτ

∫ π

0
dσ
(
δψµ+∂−ψ

ν
+ + δψµ−∂+ψ

ν
−
)
ηµν

+
i

4πα′

∫ ∞
−∞

dτ ηµν

[
ψµ−δψ

ν
− − ψ

µ
+δψ

ν
+

]σ=π

σ=0
. (2.75)

The first line leads to the equation of motion:

∂±ψ
µ
∓ = 0 . (2.76)

The boundary term can be made to vanish by imposing ψµ+ = ±ψµ− at both σ = 0 and

σ = π. The boundary conditions need to be imposed separately at each end because the

two endpoints of the string are out of causal contact so we can’t use a boundary condition

which mixes them [18]. If we impose the same boundary condition at both σ = 0 and

σ = π e.g.

ψµ+(0, τ) = ψµ−(0, τ) ; ψµ+(π, τ) = ψµ−(π, τ) , (2.77)

then Eq. (2.76) can be solved by setting ψµ± to be any periodic functions of τ ± σ with

period 2π. Fermions satisfying these boundary conditions are in the Ramond sector , and

they admit the mode expansion

ψµ∓(σ, τ) =
1√
2

∑
n∈Z

dµ∓,n e−inπ(τ∓σ) . (2.78)

Alternatively, we can impose opposite boundary conditions for the two endpoints, e.g.

ψµ+(0, τ) = ψµ−(0, τ) ; ψµ+(π, τ) = −ψµ−(π, τ) , (2.79)

then Eq. (2.76) can be solved by setting ψµ± to be any anti-periodic functions of τ ± σ
with period 2π. Fermions satisfying these boundary conditions are said to be in the

Neveu-Schwarz sector and they admit the half-integer mode expansion [32]

ψµ∓(σ, τ) =
1√
2

∑
r∈Z+ 1

2

bµ∓,r e−irπ(τ∓σ) . (2.80)
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Note that the statements about periodicity and anti-periodicity only apply to the (σ, τ)

coordinate system because of the way spinors transform under diffeomorphisms.

Unlike our discussion of the bosonic string, we have not written the superstring action

in a reparametrization-invariant way, although it is certainly possible to do so by cou-

pling Eq. (2.71) to two-dimensional supergravity [56, 57] (pedagogical treatments are in

e.g. section 5.8 of [32] or section 6.1 of [18]).

As we did in the bosonic case, let us take our action Eq. (2.74) in which the worldsheet

has been split into chiral components and switch to a Euclidean signature as we did for

the bosonic string by putting τ → −iτ . Let us use the complex coordinates defined in

Eq. (2.28). The equations of motion for ψ± (Eq. (2.76)) become ∂ψµ− = ∂ψµ+ = 0, i.e. ψ+

is holomorphic and ψ− is anti-holomorphic. Rescaling the ψµ±’s so they’re appropriately

normalized, the action Eq. (2.74) then becomes [30]

Ssc = − 1

2πα′

∫
dz dz

(
∂Xµ∂Xν − ψµ+∂ψν+ − ψ

µ
−∂ψ

ν
−
)
ηµν . (2.81)

This form of the superstring action is called superconformal gauge. Now, the bosonic

string action in conformal gauge in complex coordinates (Eq. (2.37)) was invariant under

holomorphic changes of coordinates (Eq. (2.38)); for this to be a symmetry of the action

Ssc we need ψµ± to change under coordinate transformations as

ψµ
′

+ (z′) =
(∂z′
∂z

)− 1
2
ψµ+(z) ; ψµ

′

− (z′) =
(∂z′
∂z

)− 1
2
ψµ+(z) . (2.82)

Each component of the worldsheet fermion in superconformal gauge is therefore an (anti-)

holomorphic section of a complex line bundle which transforms similarly to components

of a tensor (Eq. (2.46)) but with n = −1/2; in particular the square (in the sense of the

Picard group) of the line bundle which ψµ+ is a section of is the dual of the canonical

bundle K−1.

Then we can change coordinates so the worldsheet is parametrized as the upper-half

plane, as we did for the bosonic string; we can achieve this by setting z → z′ = eiz,

z → z′ = e−iz. The form of the worldsheet Lagrangian is unchanged, however, ψ+ in the

new coordinates includes a factor of (iz′)−
1
2 because of its transformation properties. This

changes by a factor of −1 when moved in a closed cycle around z′ = 0; this means that the

fermions in the Ramond sector which were periodic on the strip become anti-periodic on

the complex plane, while fermions in the Neveu-Schwarz sector which were anti-periodic

on the strip become periodic on the plane.

Just as with the bosonic string, we don’t have to restrict ourselves to worldsheets with

the topology of a strip; we can add handles and cut out discs to get any oriented Riemann

surface. The only qualification is that we need to be able to define spinors globally, i.e. we

need the surfaces to admit line bundles whose transition functions are of the form in

Eq. (2.82) (called spin bundles). In fact, every Riemann surface admits spin bundles [46].

Any spin bundle has a spin structure: the transition functions allow spinors which pick up

a phase of eiπ when transported around a closed curve as well as spinors which transform

trivially; the spin structure is equivalent to a prescription for how a spinor transforms
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when transported around any closed cycle. It can be specified by listing the phases ±1

associated to each of the 2g homology cycles in any canonical basis, and each of these is

independent, therefore there are 22g spin structures on a genus g Riemann surface [35].

2.1.5 Super-Riemann surfaces

Is is useful to formulate superstring perturbation theory in the language of super-Riemann

surfaces [58, 59, 60].

The superstring action in superconformal gauge (Eq. (2.81)) can also be written using

a superfield formalism: we supplement the bosonic complex coordinates (z, z) with anti-

commuting (or ‘Grassmann’) coordinates (θ, θ); we can write the coordinates in pairs as

z = z|θ; z = z|θ. The two worldsheet fields Xµ and ψµ± can then be grouped together

(along with an auxiliary field) into a superfield Xµ, which can be Taylor expanded in θ, θ

as:

Xµ(z, z) = Xµ(z, z) + θψ+(z, z) + θψ−(z, z) + θθNµ(z, z) , (2.83)

where the Taylor series is exact because θ2 = θ
2

= 0.

We can introduce superderivatives Dθ and Dθ defined by

Dθ ≡ ∂θ + θ∂z ; Dθ = ∂θ + θ∂z , (2.84)

where the derivative with respect to a Grassmann coordinate θ, ∂θ, is also anti-commuting.

It effectively selects the coefficient of θ, once θ has been anti-commuted to the left-hand-

side of the expression. Dθ and Dθ act on the superfield Eq. (2.83) to give

DθX
µ = ψµ+ + θNµ + θ ∂Xµ + θθ∂ψµ− , (2.85)

DθX
µ = ψµ− − θNµ + θ ∂Xµ + θθ∂ψµ+ . (2.86)

We can introduce the Berezin integral for integration of a superfield over fermionic coor-

dinates:∫
[dnz|dθ dθ]

(
f00(zi) + θf10(zi) + θf01(zi) + θθf11(zi)

)
=

∫
dnz f11(zi) , (2.87)

i.e. the integration over dθ dθ picks out the coefficient of θθ. But the coefficient of θθ in

DθX
µDθX

νηµν is equal to the z-integrand of the string action in superconformal gauge

(Eq. (2.81)) with an auxiliary term, i.e. we have∫
[d2z|d2θ]DθX

µDθXµ =

∫
d2z (∂Xµ∂Xν − ψµ+∂ψν+ − ψ

µ
−∂ψ

ν
− +NµNν) ηµν . (2.88)

but Nµ doesn’t interact with any of the other fields so we can set it to 0 with its equation

of motion [17]. The string action Eq. (2.81) can then be rewritten as

Ssc = − 1

2πα′

∫
[d2z|d2θ]DθX

µDθXµ . (2.89)
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The equation of motion for Xµ in superconformal coordinates is DθDθX
µ = 0, whose

general solution is Xµ(z, z) = XL(z)+iθψ+(z)+XR(z)+iθψ−(z), i.e. it splits into analytic

and anti-analytic superfields [61]

Xµ(z, z) = Xµ
L(z) + Xµ

R(z) ; Xµ
L(z) = Xµ

L(z) + iθψµ+(z) ; (2.90)

Xµ
R(z) = Xµ

R(z) + iθψµ−(z) . (2.91)

We have seen that because the bosonic string action in conformal gauge (Eq. (2.37))

is unchanged by holomorphic changes of coordinates, it is well-defined on a Riemann

surface. By analogy, we want to find a class of objects with potentially more complicated

topology where the superstring action in superconformal gauge (Eq. (2.89)) is manifestly

well-defined. It turns out that the correct setting is super-Riemann surfaces (SRS).

A SRS is a type of 1|1-dimensional complex supermanifold, i.e. it can be described

locally by one commuting complex coordinate and one anticommuting complex coordinate;

typically we write the coordinates of a point in some chart in the form z|θ. On a super-

Riemann surface Σ, there is some additional structure: the tangent bundle contains a rank

0|1 sub-bundle D, such that for any section D of D, at every point on Σ, D2 = 1
2{D,D} is

linearly independent of D [60]. Concretely, if z|θ are local coordinates on Σ, then {∂z, ∂θ}
is a local basis for TΣ and we can define

Dθ ≡ ∂θ + θ∂z . (2.92)

Since we can expand any function f as f(z, θ) = g(z) + θh(z), we have

DθDθf = ∂zf (2.93)

so D2
θ = ∂z, which is linearly independent of Dθ. In fact, this choice of D is quite general:

for any section D which satisfies D2 = D nowhere, we can change co-ordinates such that

D is of the form Dθ (see section 2.1 of [60]).

Taking advantage of this, we can choose only to use coordinates in which D is spanned

by a section of the form Eq. (2.92); we call these superconformal coordinates. We can find

an analogue of the Cauchy-Riemann equations which the transition function must satisfy

to be superconformal. Suppose that ẑ|θ̂ 7→ z|θ is some transition function to change

co-ordinates between overlapping charts. Let f be a function on the intersection of the

charts, then by the chain rule we have Dθ̂f = (Dθ̂θ)∂θf + (Dθ̂z)∂zf . We need this to be

proportional to Dθf ; this will hold if

Dθ̂z = θDθ̂θ , (2.94)

which is the required condition for a change of coordinates to be superconformal.

If ẑ|θ̂, z|θ are two superconformal charts on a SRS, then the two volume forms

[dẑ|dθ̂]D
θ̂
f and [dz|dθ]Dθf are identical, i.e. their Berezin integrals are the same (see

e.g. section 2.4 of [60]). From this it follows that the superstring action Eq. (2.89) is

well-defined globally on a SRS, where the integration variables are any local choice of
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superconformal coordinates.

2.1.6 Super-projective transformations

The simplest compact super-Riemann surface is the super-Riemann sphere CP1|1. This

can be defined in terms of homogeneous coordinates in C2|1 by the equivalence relation

(z1, z2|ζ) ∼ (λz1, λz2|λθ) for non-zero complex λ, where the bosonic coordinates z1 and z2

are not allowed to vanish simultaneously. It can be covered by two coordinate charts: for

z2 6= 0 we can use z|θ ≡ z1
z2
| ζz2 and for z1 6= 0 we can use w|ψ ≡ −z2z1 |

ζ
z1

. Both coordinate

charts are superconformal, i.e. Eq. (2.94) is satisfied by the transition function between

them.

The transition function between the two charts is an automorphism of CP1|1; other

automorphism are generated by super-conformal versions of translations and dilatations

given by

z|θ 7→ z − a− θα|θ − α ; z|θ 7→ λ2z|λθ . (2.95)

From these we can generate the full group of automorphisms, the orthosymplectic group

OSp(1|2) [60] (also called OSp(1, 1) in e.g. [39]), which can be realised by matrices of the

form

S =

 a b α

c d β

γ δ e

 (2.96)

where the 5 bosonic and 4 fermionic variables are subject to the 2 fermionic and 2 bosonic

constraints,(
α

β

)
=

(
a b

c d

)(
−δ
γ

)
; ad− bc− αβ = 1 ; e = 1− αβ , (2.97)

so the group has dimension 3|2.

If we define a skew-symmetric bilinear form 〈·, ·〉 on the homogeneous co-ordinates by

〈z, y〉 = z1y2 − z2y1 − θψ (2.98)

then OSp(1|2) can be characterized as the subgroup of GL(2|1) which preserves 〈·, ·〉 [60].

We can find an OSp(1|2) matrix taking u = (u1, u2|θ) and v = (v1, v2|φ) to points

equivalent to (0, 1|0) and (1, 0|0) respectively; one such matrix is

Γuv =
1√
〈u,v〉


u2 −u1 θ

v2 −v1 φ
u2φ−v2θ√
〈u,v〉

v1θ−u1φ√
〈u,v〉

√
〈u,v〉 − θφ√

〈u,v〉

 . (2.99)

We have one bosonic degree of freedom remaining; we can stipulate that a point w =

(w1, w2|ω) is mapped to a point equivalent to (1, 1|Θuwv) where there is no freedom in
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choosing the fermionic co-ordinate, which is therefore a super-projective invariant of u,v

and w. The image of w under Γuv is

Γuvw =
1√
〈u,v〉

(
〈w,u〉, 〈w,v〉

∣∣θ〈v,w〉+ φ〈w,u〉+ ω〈u,v〉+ ωθφ√
〈u,v〉

)
. (2.100)

A general dilatation of the superconformal co-ordinates corresponds to the OSp(1|2) ma-

trix

P(y) =

 y
1
2 0 0

0 y−
1
2 0

0 0 1

 , (2.101)

which leaves invariant the points (0, 1|0) and (1, 0|0). We may use a transformation like

this to scale the bosonic coordinates of Γuvw as desired, obtaining

P
( 〈w,v〉
〈w,u〉

)
Γuvw ∼

(
1, 1
∣∣∣θ〈w,v〉+ ω〈v,u〉+ φ〈u,w〉+ θωφ√

〈v,u〉〈u,w〉〈w,v〉

)
(2.102)

giving us an explicit expression for the odd super-projective invariant Θz1z2z3 :

Θz1z2z3 =
ζ1〈z2, z3〉+ ζ2〈z3, z1〉+ ζ3〈z1, z2〉+ ζ1 ζ2 ζ3√

〈z1, z2〉〈z2, z3〉〈z3, z1〉
, (2.103)

where zi = zi|ζi, as in Eq. (3.222) of [39].

2.2 Quantization

In this section we discuss the quantization of the bosonic strings and superstrings we

discussed in section 2.1. We use the ‘first-quantized’ path integral formalism in which we

treat the embedding functions Xµ and the worldsheet metric hαβ as integration variables.

We recall facts about conformal field theory (CFT) and show that the BRST quantization

procedure can be implemented by coupling the worldsheet metric to a ghost CFT.

Use has been made of the lecture notes by Friedan [48, 58], Dixon [30], Alvarez [47]

and Tong [21], the textbook by Polchinski [62] and classic papers by Belavin, Polyakov

and Zamolodchikov [63], Friedan, Martinec and Shenker [61] and D’Hoker and Phong [39].

Quantization of the worldsheet action was first carried out by Polyakov for the bosonic

string in [29] and the superstring in [55].

2.2.1 The gauge symmetry of bosonic string theory

We’ve seen in section 2.1.2 that the bosonic string is described by an action (Eq. (2.6))

which is a functional of Xµ, which describes the embedding of the string worldsheet into

spacetime, and hαβ, the metric on the worldsheet. In section 2.1.3 we discussed how the

action can be generalized to worldsheets with handles and additional boundaries. As in

any quantum theory, we can compute observables by evaluating a path integral over all

possible ‘histories’, which in this case means taking some fixed abstract two-dimensional
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manifold Σ (with a fixed choice of coordinates), and then integrating over both the space

E of embedding functions Xµ and over the space Mg of worldsheet metrics hαβ. The path

integral includes a sum over all possible topologies of the worldsheet. In the case of closed

string worldsheets, this is equivalent to a sum over genera (i.e. number of handles) but

there are more topologies to sum over when boundaries are permitted.

We have seen that the action Eq. (2.6) is invariant under both the group of reparametriza-

tions of the surface D(Σ) (Eq. (2.13)) and the group of Weyl rescalings C (Σ) (Eq. (2.11)).

This means that there is the possibility of over-counting: one pair of functions (Xµ, hαβ)

on Σ may be equivalent to a different pair of functions (X̃µ, h̃αβ) on Σ up to the action of

a reparametrization of Σ; in this case we want to ensure that only one from each equiv-

alence class is counted. Moreover, we want to ensure that if two metric on a surface are

related by a Weyl scaling then only one of them is counted. The gauge group is then the

semidirect product G = C (Σ)nD(Σ) [64]. The integration has to be carried out over the

space E ×Mg/(C (Σ) n D(Σ)).

Diffeomorphisms generated by vector fields ξα constitute only the identity component

D0(Σ) of the full group of diffeomorphisms. D0(Σ) is a normal subgroup of D(Σ) and

the quotient is called the mapping class group (D(Σ)/D0(Σ) = MCG), which is a discrete

group [31, 52]. The quotient of the space of genus-g metrics Mg by C (Σ) n D0(Σ) is

called Teichmüller space Tg. Teichmüller space over-counts since we are only interested in

inequivalent surfaces, because we have quotiented only by the identity component of the

diffeomorphism group D0; really we should have divided Mg by the full group of diffeo-

morphisms which would leave us with moduli space Mg = Tg/MCG instead of Teichmüller

space. Roughly, moduli space is the space of complex structures on a surface with a given

topology [31, 39].

The integration measures on E and Mg were constructed by Polyakov in [29], with

developments in [47] for open string worldsheets; more details are given in [48, 33, 39].

The measures are constrained by ‘ultralocality’, i.e. independence of the derivatives of hαβ

and δXµ. We will not look at the construction of the measure but just make use of the

results.

The path integral for bosonic string theory is written, then, as an integral over E ×Mg

divided schematically by the ‘volume’ of the gauge group:

Z =

∫
Dhαβ DXµ 1

Vol(C (Σ) n D(Σ))
e−Sbos[X,h] (2.104)

We can denote a general gauge transformation as ζ and we can write the corresponding

change of metric as hαβ 7→ hζαβ. We need to choose a particular gauge for our compu-

tations, such as the conformal gauge (Eq. (2.15)), by specifying its functional form; in

general we call our arbitrary chosen metric the fiducial metric ĥαβ.

The fiducial metric ĥαβ is some unique way of choosing a representative for each class

of physically equivalent metrics, so integrating over the space of all fiducial metrics is the

same as integrating over the space of all physically distinct configurations.

Formally, we can gauge fix to get the fiducial metric by inserting a functional Dirac δ-

function. This would change the value of the path integral so we need to include another
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term to cancel it. If we were able to integrate the δ-function over a set of physically

equivalent metrics then we would be able to insert a factor of unity, but it is not clear how

to perform this integration in general; we actually have to perform the integral over the

gauge group: ∫
Dζ δ(hαβ − ĥζαβ) =

1

∆FP[h]
(2.105)

which defines ∆FP[h], the Faddeev-Popov determinant evaluated for a metric hαβ.

For any gauge transformation ζ we have ∆FP[h] = ∆FP[hζ ] so ∆FP is gauge-invariant;

this follows from the gauge-invariance of the integration measure and of the δ function.

We can use this to insert a factor of unity, 1 = ∆FP[h]
∫
Dζ δ(hαβ − ĥζαβ) in the path

integral

Z =

∫
Dζ DhDXµ ∆FP[h]δ(hαβ − ĥζαβ)

1

Vol(C (Σ) n D(Σ))
e−Sbos [X,h] (2.106)

so we can perform the hαβ integration and the δ function replaces each instance of hαβ

with ĥζαβ:

Z =

∫
Dζ DXµ ∆FP[ĥζ ]

1

Vol
e
−S

bos[X,ĥζ ] (2.107)

but since both ∆FP and Sbos are gauge-invariant we can replace ĥζαβ with ĥαβ everywhere

so only the fiducial metric appears

Z =

∫
Dζ DXµ ∆FP[ĥ]

1

Vol(C (Σ) n D(Σ))
e−Sbos[X,ĥ]. (2.108)

Note that nothing in the integrand now depends on the gauge transformation ζ, so the∫
Dζ path integral is now just a constant factor corresponding to the number of physically

equivalent configurations; it cancels 1/Vol(C (Σ) n D(Σ)) and we are left with

Z =

∫
DXµ ∆FP[ĥ]e−Sbos[X,ĥ]. (2.109)

This is an integral over physically distinct configurations with a canonical choice of

fiducial metric ĥ. It is weighted appropriately by ∆FP, which it wouldn’t be if we had

näıvely specified the functional form of the metric and integrate over field configurations.

It still remains to compute ∆FP.

2.2.2 The Faddeev-Popov determinant

The next step is to compute the expression in Eq. (2.105) for ∆−1
FP[h]. Considering

only infinitesimal gauge transformations ζ close to the identity, we can write a first-

order expansion ĝζαβ ≈ ĥαβ + δĥαβ where δĥαβ can include both infinitesimal diffeo-

morphisms (Eq. (2.13)) and Weyl transformations (Eq. (2.11)) of the infinitesimal form

hαβ → (1 + 2ω)hαβ, giving

δĥαβ = 2ωĥαβ +∇αξβ +∇βξα . (2.110)
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Inserting this expression for hαβ − ĥζαβ in the δ function in Eq. (2.105), we can write

the integral over all gauge transformations as a functional integral over all infinitesimal

diffeomorphisms ξα and Weyl transformations ω, then

∆−1
FP[ĥ] =

∫
DωDξαδ(2ωĥαβ +∇αξβ +∇βξα) , (2.111)

This is like integrating over the Lie algebra of a Lie group except the gauge group in this

case is an infinite-dimensional space of functions.

We may replace the δ-function with its integral form obtaining

∆−1
FP[g] =

∫
DωDξαDβαβ exp

(
2πi

∫
d2σ

√
−ĥ βαβ(2ωĥαβ +∇αξβ +∇βξα)

)
, (2.112)

where βαβ is a rank 2 tensor on the worldsheet which multiplies ĥαβ so we can assume it

is symmetric. Performing the Dω integral we obtain a δ function∫
Dω exp

(
2πi

∫
d2σ

√
−ĥ βαβĥαβ 2ω

)
= δ(2βαβĥαβ) , (2.113)

which fixes βαβĥαβ = 0 so we take βαβ to be traceless. We then replace the βαβ integral

with one over all symmetric, traceless β̃αβ:

∆−1
FP[ĥ] =

∫
DωDβ̃αβ exp

(
4πi

∫
d2σ

√
−ĥ β̃αβ∇αvβ

)
(2.114)

where we have used the symmetry of β̃αβ to write β̃αβ(∇αξβ +∇βξα) = 2βαβ∇αξβ.

We have an expression for ∆−1
FP[h] but we need to invert it to get ∆FP[h]. This can

be done with the simple trick of changing the integration variables β̃αβ and ξα from

commuting to anticommuting ghost fields: let

β̃αβ → bαβ ; ξα → cα , (2.115)

giving the path integral

∆FP[h] =

∫
Dbαβ Dcα exp(iSgh[b, c, ĥ]) (2.116)

where

Sgh[b, c, h] =
1

2π

∫
d2σ
√
−h bαβ∇αcβ. (2.117)

In conformal gauge (Eq. (2.15)) this is particularly simple:

Sgh =
1

2π

∫
d2z

(
bzz∂ c

z + bzz∂ c
z
)
, (2.118)

which doesn’t depend on the Weyl scaling factor ω.
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Then the Polyakov path integral is given as

Z[ĥ] =

∫
DXDbαβ Dcαe−Sbos[ĥ]−Sghost[ĥ,b,c]. (2.119)

RNS superstrings

For superstrings, the situation is analogous. The full worldsheet action now depends not

only on the metric hαβ but also on its superpartner, a spin-3
2 gravitino χα (see e.g. §3.1 of

[39], §6.1 of [18], §5.8 of [32] or §4.1 of [61]). To write the worldsheet action in the form of

Eq. (2.89) requires choosing a gauge slice for both the metric and the gravitino; the gauge

slice we have chosen is called the superconformal gauge. Just as the bosonic string had a

residual Weyl symmetry (Eq. (2.11)) even after fixing conformal gauge (Eq. (2.37)); so the

RNS superstring has a residual superconformal symmetry even after fixing superconformal

gauge. This can be seen from the form of the action Eq. (2.89) which is invariant under

superconformal changes of coordinates.

Just as the path integral for bosonic string theory can be reduced from a redundant

integral over all worldsheet metrics hαβ to an integral over the finite-dimensional moduli

space of Riemann surfaces, so the path integral for RNS superstrings can be reduced from

a redundant path integral over worldsheet metrics hαβ and gravitons χα to an integral over

the finite-dimensional space of SRSs with a given topology, called super-moduli space M.

Super-moduli space is a complex supermanifold in its own right (to be more precise, it’s

an orbifold because the mapping class group has fixed points). The super-moduli space of

compact SRSs of genus g > 1, Mg, has complex dimension 3g − 3|2g − 2 [65].

We can replace the integral over all metrics and gravitinos by an integral over a gauge

slice multiplied by a Faddeev-Popov determinant, as for the bosonic string, but for the

superstring the requisite ghost fields are superfields. For the analytic sector, let [61]

Cz = cz + θγθ ; Bzθ = βzθ + θbzz , (2.120)

with C
z

and Bzθ defined similarly. Since θ is anti-commuting and so are bzz and cz, it

follows that γθ and βzθ must be commuting variables. The ghost action for the superstring

becomes

Sgh =
1

2π

∫
[d2z|d2θ] (BzθDθC

z +BzθDθC
z
) , (2.121)

writing this out in terms of the component fields we find

Sgh =
1

2π

∫
d2z (bzz∂c

z + βzθ ∂ γ
θ + bzz∂c

z + βzθ ∂ γ
θ) , (2.122)

which reduces to the ghost action for the bosonic case (Eq. (2.118)) when we set the β, γ

fields to 0.
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2.2.3 Conformal Field Theory

As we have seen in section 2.1.2, the classical bosonic string can be described in complex

coordinates by an action of the form Eq. (2.37) which is invariant under conformal trans-

formations of the form Eq. (2.38). We want to consider the theory obtained by quantizing

this action, i.e. by promoting the worldsheet Xµ field theory to a quantum field theory.

Note that this is a ‘first-quantized’ version of string theory [61] in the same sense that

quantum mechanics can be conceptualized as a 1-dimensional QFT on the worldline of a

particle; we will not discuss the second-quantized theory of strings (known as string field

theory). Because of the conformal invariance of the action, we use the specialized language

of conformal field theory (CFT) which is more useful for theories with this symmetry [21].

In the string action we are using Eq. (2.6) there is a worldsheet metric hαβ which,

although it has a less obvious physical meaning than the fields Xµ, must still be integrated

over in the path integral. The fundamental objects we will be interested in calculating are

expectation values of operators evaluated with the path integral:

〈
O1(z1, z1), . . . ,On(zn, zn)

〉
≡
∫
Dhαβ DXµ e−Sbos

(
O1(z1, z1), . . . ,On(zn, zn)

)
. (2.123)

Here the local operators inside the correlation function are understood to be radially

ordered i.e. |z1| > |z2| > . . . > |zn| [30]; this is equivalent to τ -ordering and then changing

to radial coordinates Eq. (2.45).

We can find the propagator for Xµ. Writing the conformal gauge bosonic string action

Eq. (2.6) in cartesian coordinates as Sbos = 1
4πα′

∫
d2σ ∂αX

µ∂αXµ, we can use

δ

δXµ(σ1)

[
e−SbosXν(σ2)

]
= e−Sbos

(
ηµνδ2(σ1 − σ2) +

1

2πα′
∂α∂

αXµ(σ1)Xν(σ2)
)
, (2.124)

along with the fact that the path integral of a functional derivative vanishes to get [21]

〈∂α∂αXµ(σ1)Xν(σ2)〉 = −2πα′ηµνδ2(σ1 − σ2) , (2.125)

which is a partial differential equation for the propagator 〈Xµ(σ1), Xν(σ2)〉 whose solution

on the complex plane is [21]

〈Xµ(σ1), Xν(σ2)〉 = α′G(σ1, σ2)ηµν = −α
′

2
log |σ1 − σ2|2ηµν . (2.126)

The scalar propagator in complex coordinates is given by G(z, w) = − log 2|z − w|2 ∼
− log(z − w)− log(z∗ − w∗). On a higher-genus Riemann surface the propagator is given

in complex coordinates in terms of the prime form (Eq. (2.64)) by

G(x, y) = − log |E(x, y)|2 + 2π
(
Im

∫ x

y
~ω
)
· (Imτ)−1 ·

(
Im

∫ x

y
~ω
)
. (2.127)

Operators evaluated at nearby points can be expressed in terms of the operator product
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expansion (OPE) [30]

Oi(z, z)Oj(w,w) =
∑
k

Cij
k(z − w, z − w)Ok(w,w) . (2.128)

the sum ranges over all operators in the theory and the operator product coefficients Cij
k

are determined by the behaviour of the fields under fractional linear transformations. In

d = 2, the coefficients in the OPEs are of the form Cij
k = cij

k (z − w)α(z − w)β for some

α, β and constants cij
k [30].

Some operators are classed as primary depending on their OPE with the stress-energy

tensor: if it is of the form [30]

TX(z)O(w,w) ∼ h

(z − w)2
O(w,w) +

∂wO(w,w)

z − w
+ . . . , (2.129)

T
X

(z)O(w,w) ∼ h

(z − w)2
O(w,w) +

∂wO(w,w)

z − w
+ . . . , (2.130)

(where the ellipses “. . .” indicate non-singular terms which don’t contribute to contour

integrals) then O is called a primary operator of weight (h, h). Xµ(z, z) is not a well-

behaved conformal field because of the logarithmic behaviour of its two-point function,

Recall that we saw in Eq. (2.12) that Weyl invariance implied that the stress-energy

tensor is traceless, TXαα = 0; this is the defining feature of a conformal field theory. It

may hold at the classical level but fail due to quantum corrections as in, for example,

Yang-Mills theory. We will see that tracelessness does fail for the Xµ CFT in general but

in the critical dimension it cancels the contribution from the ghost CFT.

Any holomorphic field of weight h (i.e. one that transforms as in Eq. (2.46) with

n+ − n− = h can be Laurent expanded as [30]

A(z) =
∑

n∈Z−h
Anz

−n−h , An =
1

2πi

∮
dz

z1−n−h A(z) , (2.131)

a similar statement holds for anti-holomorphic fields of weight h being expressed as Lau-

rentz series in z.

We know that Xµ is the sum of a holomorphic left-moving and anti-holomorphic right-

moving part (Eq. (2.39)), from which it follows that ∂Xµ
L and ∂Xµ

R are holomorphic and

anti-holomorphic, respectively, and therefore they admit Laurent expansions in z and z,

respectively. Since Xµ is a worldsheet scalar, ∂αX
µ has weight h = 1. We can write

∂Xµ
L(z) = −i

√
2α′

∑
n∈Z

αµn z
−n−1 ; ∂Xµ

R(z) = −i
√

2α′
∑
n∈Z

α̃µn z
−n−1 . (2.132)

We can write down expressions for αµn and α̃µn using contour integrals around 0: we get

[30]

αµn =
i√
2α′

∮
dz

2πi
∂Xµ

L(z) zn ; α̃µn =
i√
2α′

∮
dz

2πi
∂Xµ

R(z) zn . (2.133)
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Figure 2.5: Radial-ordered commutators with (anti-) analytic fields expressed as a contour
integral.

These have the commutation relations

[αµm, α
ν
n] = mδm+n,0η

µν . (2.134)

TX and T
X

are actually not examples of primary fields themselves; for a generic CFT,

TX satisfies [30]

TX(z)TX(w) ∼ c/2

(z − w)4
+

2TX(w)

(z − w)2
+
∂wT

X(w)

z − w
+ . . . (2.135)

and there is an analogous OPE for T
X

with itself. In the quantum theory, TX no longer

transforms as a tensor but as a ‘projective connection’ with [20]

T
′X(z′)(dz′)2 = TX(z)(dz)2 − c

12
{z′; z}(dz)2 , (2.136)

where { ; } is the Schwarzian derivative which can be expressed in several equivalent

ways [66, 41, 67]

{f ; z} ≡ f ′′′

f ′
− 3

2

(f ′′
f ′

)2
≡
(f ′′
f ′

)′
− 1

2

(f ′′
f ′

)2
≡ −2

√
f ′
( 1√

f ′

)′′
, (2.137)

where all the primes indicate derivatives with respect to z. { , } satisfies the following chain

rule: {gf, z} = {g, f(z)}(f ′(z))2 + {f, z}, and vanishes for Möbius maps f(z) = az+b
cz+d as is

clear from the last formula in Eq. (2.137) since 1/
√
f ′(z) ∝ cz + d.

We saw in section 2.1.2 that conformal transformations generate conserved currents

(Eq. (2.43)); it follows from Stokes’ theorem that there is a radially conserved charge Q(ε)

given by a contour integral [30]:

Q(ε) =
1

α′

∮
dz

2πi
ε(z)TX(z) +

1

α′

∮
dz

2πi
ε(z)T

X
(z) , (2.138)

where the contours depend on where Q(ε) appears in the radially-ordered correlation func-

tion (i.e. they should have all of the insertion points of operators to the right-hand-side

of Q(ε) on their inside and all of the insertion points of operators to the left-hand-side of

Q(ε) on their outside).

The commutator of an analytic (or anti-analytic) field like TX(z) with another field

φ(w,w) (inside a radial-ordered correlation function) can be written in terms of a contour

integral around w: see Fig. 2.5 [30], we have
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[Q(ε), φ(w,w)] =
1

α′

∮
w

dz

2πi
ε(z)TX(z)φ(w,w) +

1

α′

∮
w

dz

2πi
ε(z)T

X
(z)φ(w,w) . (2.139)

T (z) and T (z) are fields of weight (2, 0) and (0, 2) so they can be Laurent expanded as in

Eq. (2.131) as [30]

TX(z) =
∑
n∈Z

LXn z
−n−2 ; LXn =

∮
dz

2πi
TX(z)zn+1 (2.140)

and similarly T (z) can be expanded in terms of Ln. Evaluating the radially-ordered

commutator as in Eq. (2.139), we can use the OPE for T (z) (Eq. (2.135)) to get

[LXm, L
X
n ] =

c

12
(m3 −m)δm+n,0 + (m− n)LXm+n ; (2.141)

the L
X
m’s satisfy the same algebra and commute with the Lm’s. This algebra is called

the Virasoro algebra. Similarly it can be shown that any analytic field φ(z) which can be

Laurent expanded in An (as in Eq. (2.131)) satisfies

[LXm, An] = ((h− 1)m− n)Am+n . (2.142)

2.2.4 BRST Quantization

Theories with a gauge symmetry, i.e. theories whose mathematical description is redundant

in that there are many equivalent ways to describe the same physical data, actually admit

a deeper symmetry which was found by Becchi, Rouet and Stora [68] and Tyutin [69].

The analysis was first applied to the quantization of strings in [70] and [71].

Suppose we have a quantum field theory invariant under some local symmetry. Call

the fields φi where i is a general label; it can distinguish between different types of fields.

In our case both Xµ and gαβ are together the φi. There is a symmetry group which we

parameterize with the infinitesimal transformations δα which satisfy an algebra

[δα, δβ] = fγαβδγ (2.143)

(this is like how the infinitesimal elements of a Lie group—equivalently the tangent space

at the identity—automatically form a Lie algebra with the commutator bracket but in our

case the space of symmetry parameters is infinite-dimensional). A general group element

is denoted by the linear combination εαδα. Note that the index α here is an abstract

index representing the spacetime indices µ, . . ., the worldsheet indices α, β, . . . and the

worldsheet coordinate σ all at the same time. An expression with Einstein summation

requires integration over the worldsheet coordinates variables.

We gauge fix using a functional FA, where again the index A can depend on the the

worldsheet coordinate, to impose a gauge condition FA(φ) = 0. For example, in the

lightcone gauge this imposes constraints on X+, X− and gαβ; in conformal gauge all

constraints are imposed on gαβ.
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We can impose the constraint by inserting a δ functional into the path integral:

δ(FA(φ)) =

∫
DBA exp(iBAF

A) (2.144)

and then the path integral becomes∫
Dφi exp(−S)

1

Vol
→
∫
DφiDBADBADcαDbA exp(−S + iBAF

A − bAcαδαFA) (2.145)

where the factor ∫
DbADcα exp(−bAcαδαFA) (2.146)

is the general expression for a Faddeev-Popov determinant. We can think of this as

a single action S′ = S + Sgauge + Sghost where we have defined a gauge-fixing action

Sgauge = −iBAF
A and a ghost action Sghost = bAc

αδαF
A. The new action S′ is integrated

over the original fields φi, the ghost fields bA and cα, and a new field ‘conjugate’ to FA,

BA. S′ has a an additional symmetry, Becchi-Rouet-Stora-Tyutin (BRST) symmetry; it

is invariant under the BRST transformation δB whose action on the fields is given by

δBφi = −iεcαδαφi (2.147)

δBBA = 0 (2.148)

δBbA = εBA (2.149)

δBc
α =

i

2
εfαβγc

βcγ . (2.150)

Now because the φi and BA are taken to be commuting whereas bA and cα are anti-

commuting, it is necessary for ε to be anti-commuting so that these transformations pre-

serve the commutation type of the fields.

Note that the original action S is invariant by itself under this action because it is just

a gauge transformation paramaterized by εcα, and the action is gauge invariant.

The variation in the other two terms cancels out; this follows from the anti-commuting

properties of cα and the Lie algebra axioms the structure constants satisfy. Therefore the

BRST variation is nilpotent,

δB(δB) = 0. (2.151)

The other important property of the transformation is that [72]

δB(bAF
A) = iε(Sgauge + Sghost) . (2.152)

Suppose we make an infinitesimal change in the gauge-fixing functional FA, FA 7→
FA + εδFA. S does not depend on F so it does not change, and S′ changes as

S′ 7→ S′ + εδ(Sghost + Sgauge) = −iδB(bAδF
A) (2.153)

where we have used Eq. (2.152). Then the change in the matrix element between an initial
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and final state 〈f |i〉 can be shown with a path integral manipulation to be given by

εδ〈f |i〉 = i〈f |δB(bAδF
A)|i〉. (2.154)

We define a conserved BRST charge QB whose anti-commutator gives the BRST trans-

formation

iε{QB, Y } = δB(Y ) (2.155)

so we have

δ〈f |i〉 = −〈f |ε{QB, bAδF
A}|i〉. (2.156)

We want amplitudes to be stationary under a small variation of the action so we stipulate

that physical states will satisfy

〈ψ′|ε{QB, bAδF
A}|ψ〉 = 0. (2.157)

We need this to hold for arbitrary variations δFA; this means it is necessary to enforce

QB|ψ〉 = 0 (2.158)

for any physical state |ψ〉, i.e. we enforce that physical states must be BRST invariant, or

closed. Physical states defined in this way form a subspace of the Hilbert space H called

Hclosed.

If we change our gauge choice FA then the functional dependence of the hamiltonian

changes, but we want to be able to alter our gauge choice while QB remains conserved. In

particular we want QB to commute with the variation in the action

[QB, {QB, bAδF
A}] = [Q2

B, bAδF
A] = 0 (2.159)

and this holds for arbitrary δFA only if Q2
B = 0. We can’t have Q2

B = constant because

QB has ghost number 2.

We can check that the action of δB on the fields given above is indeed nilpotent using

the anti-commutation property of the cα and the Lie algebra axioms satisfies by fαβγ .

The nilpotence of QB means that from an arbitrary state |χ〉 we can get a physical

state QB|χ〉, which is automatically annihilated by QB. We call a state of the form QB|χ〉
exact. Exact states form a subspace of the Hilbert space called Hexact.

The hermiticity of QB can be used to see that an exact state is annihilated by any

physical state (including itself or any exact state) |ψ〉 since

〈ψ|QB|χ〉 = (QB|ψ〉)†︸ ︷︷ ︸
=0

|χ〉 = 0. (2.160)

Then if |ψ〉 is any physical state, |ψ′〉 = |ψ〉+QB|χ〉 for any state |χ〉 is also physical, and
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moreover it has the same inner product with any other physical state |ζ〉 as |ψ〉 does:

〈ζ|ψ′〉 = 〈ζ|ψ〉+ 〈ζ|QB|χ〉︸ ︷︷ ︸
=0

= 〈ζ|ψ〉. (2.161)

Then the two states |ψ〉 and |ψ′〉 are physically equivalent, and we can define an equivalence

relation ∼B by |ψ1〉 ∼B |ψ2〉 whenever |ψ2〉 = |ψ1〉+QB|χ〉 for some |χ〉.
The space of physically distinct states is then

HBRST = H / ∼B=
Hclosed

Hexact
. (2.162)

When we have a nilpotent operator such as QB, the image of the operator is a sub-

space of its kernel, and the space of closed forms quotiented out by the exact forms is

called a cohomology group. Then the space of physical and physically distinct states is a

cohomology group.

2.2.5 BRST quantization of the string

As discussed in section 2.2.2, the gauge symmetry of the bosonic string can be fixed by the

introduction of a Faddeev-Popov determinant, expressed in terms of a (b, c)-ghost system

on the worldsheet.

As we did for the matter fields in Eq. (2.8), we can define a stress tensor for the

ghost fields in terms of the functional derivative of the ghost action with respect to the

worldsheet metric, obtaining

T gh
αβ = − 4πα′√

−h
δSgh

hαβ
; (2.163)

we get a symmetric traceless tensor given in the conformal gauge as [17]

T gh = α′(c ∂b+ 2(∂c)b) , (2.164)

with a similar equation for T
gh

in the case of the closed string. Imposing the equal time

anti-commutation relations in light-cone co-ordinates {b++(σ, τ), c+(σ′, τ)} = 2πδ(σ−σ′),
it can be found that in complex coordinates the radial quantization of the (b, c) system

can be expressed as

c(z) =
∑
n∈Z

cn
zn−1

; b(z) =
∑
n∈Z

bn
zn+2

; {cm, bn} = δm+n,0 , (2.165)

with all other (anti-)commutators vanishing. As we did for the matter stress-energy tensor

TX in Eq. (2.140), we can expand T gh(z) in modes as

T gh(z) =
∑
n∈Z

Lgh
n z
−n−2 ; Lgh

n =

∮
dz

2πi
T gh(z)zn+1 . (2.166)
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The mode expansion of Lgh is

Lgh
n =

∑
n∈Z

(2m− n)bm+nc−n , (2.167)

which satisfy the algebra

[Lgh
m , L

gh
n ] = (m− n)Lgh

m+n +
1

6
(m− 13m3)δm+n,0 . (2.168)

When Lgh
m and LXm are combined to give a single operator Lm defined as

Lm = LXm + Lgh
m − δm,0 , (2.169)

the Lm’s satisfy the algebra

[Lm, Ln] = (m− n)Lm+n +
D

12
(m3 −m) +

1

6
(m− 13m3) + 2m. (2.170)

In the case D = 26, the central term vanishes. The structure constants of the symmetry

algebra therefore have a simple form and we can construct the BRST charge QB for bosonic

string theory. Whenever we have an action with a gauge symmetry generated by elements

of a Lie algebra spanned by Ki with structure constants [Ki,Kj ] = fij
kKk, with ghosts

bi and ci which transform in the adjoint and dual-adjoint representation, respectively, we

can construct a nilpotent operator [17]

Q = ciKi −
1

2
fij

kcicjbk . (2.171)

The Virasoro algebra generated by the Lm’s is a suitable candidate for this Lie alge-

bra when D = 26, with the bn and cn modes transforming appropriately. Then we can

construct the following BRST operator for the open bosonic string:

Q =
∑
m∈Z

LX−mcm −
1

2

∑
m,n∈Z

(m− n) : c−mc−nbm+n : −c0 (2.172)

=
∑
n∈Z

: (LX−n +
1

2
Lgh
−n − δn,0)cn : (2.173)

=

∮
dz

2πi
: c
(
TX +

1

2
T gh

)
: (2.174)

=

∮
dz

2πi
: c
(
− 1

4α′
∂X · ∂X + (∂c)b

)
: . (2.175)

The space of physical states can be calculated from this, see e.g. section 4.3 of [62]. States

are written in terms of the SL(2,R)-invariant state, |0; 0〉, which is annihilated by αµn for

n ≥ 0, by cn for n ≥ 2 and by bn for n ≥ −1. Then the states

|k〉 ≡: eik·X : c1|0; 0〉 (2.176)

with k2 = − 1
α′ are Q-closed; these correspond to the tachyon of the theory. At the next
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level, the massless excitations which are the ones we are interested in from the point of

view of studying QFT in the α′ → 0 limit, before computing the BRST cohomology there

is a 28-dimensional vector space of states spanned by

|Sµ1 〉 = Nαµ−1|k〉 ; |S2〉 = c−1|k〉 ; |S3〉 = b−1|k〉 ; (2.177)

where µ = 0, . . . , 25 and now k2 = 0. Let us find the cohomology of Q. To begin,

we compute Q|Sµ1 〉. Using the expression for Q in Eq. (2.175), we can begin with the

contribution coming from the TX term. Using the mode expansion of TX , this term

becomes

N
8

∑
`,n

∮
dz

2πi
:
c(z)

z`+2
α`−n · αn : αµ−1|k〉 (2.178)

From the commutation relations Eq. (2.134) we can calculate [α`−n · αn, αµ−1] = (δn1 +

δ`−n,1)αµ`−1 which we can insert in Eq. (2.178) yielding

N
8

∑
`

∮
dz

2πi

c(z)

z`+2
2αµ`−1|k〉+

N
8

∑
`,n

∮
dz

2πi

c(z)

z`+2
αµ−1 : α`−n · αn : |k〉 . (2.179)

Let us calculate the first term in Eq. (2.179). From the mode expansion of the string

coordinates Xµ (e.g. Eq. (2.7.26) of [62]):

Xµ(z, z) = xµ − iα′pµ log |z|2 + i
(α′

2

) 1
2
∑
m6=0

αµm
m

(z−m + z−m) , (2.180)

we can calculate

[αµm, : eik·X(w) :] =
(α′

2

) 1
2
(wm + wm)kµ : eik·X(w) : . (2.181)

Using this, the first term of Eq. (2.179) becomes:

N
4

: eik·X :
∑
`

c−`c1

((α′
2

) 1
2
(w`−1 + w`−1)kµ + αµ`−1

)∣∣∣
w=0
|0; 0〉 . (2.182)

For ` ≥ 2, the summand vanishes because αµ`−1 annihilates the vacuum or because w`−1 →
0. For ` = 1, the oscillator mode αµ`−1 ∝ pµ annihilates the vacuum but the other term

doesn’t vanish; indeed it is equal to

N
2

(α′
2

) 1
2
kµ|S2〉 . (2.183)

For ` ≤ −2, c−` annihilates |0; 0〉 and for ` = −1, c−`c1 = 0. The case ` = 0 remains;

starting from Eq. (2.179) it is easy to check that it is given by 1
4c0|Sµ1 〉 and we will see

that it cancels a contribution from the T gh term of Q|Sµ1 〉.
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The second term in Eq. (2.179) can be calculated with the use of

: α`−n · αn : |k〉 = c1

(
[: α`−n · αn :, : eik·X(w) :]+ : eik·X(w) :: α`−n · αn :

)∣∣∣
w=0
|0〉 (2.184)

The second term on the right hand side of Eq. (2.184), when inserted in the second term

of Eq. (2.179), gives

N
8

∑
`,n

c−`α
µ
−1c1 : eik·X :: α`−n · αn : |0; 0〉 = 0 (2.185)

which vanishes because at least one of c−`, α
µ
`−n, αµn must be an annihilation operator.

To evaluate the commutator in Eq. (2.184), we use Eq. (2.181) to get

[α`−n · αn, : eik·X(w) :] (2.186)

=
(α′

2

) 1
2

: eik·X(w) :
(
(wn + wn)α`−n · k + (w`−n + w`−n)αn · k

)
.

where use has been made of the fact that α`−n · k can be commuted past : eik·X(w) : since

all possible commutators are proportional to k2 = 0.

Now, when either ` − n ≥ 1 or n ≥ 1, Eq. (2.186) annihilates the vacuum, because

in each term there is either a positive power of w which vanishes in the limit w → 0,

or there is a positive-moded αm which annihilates the vacuum. When n = 0, αµn ∝ pµ

annihilates the vacuum but (wn+wn) doesn’t vanish, and similarly when `−n = 0 the first

term annihilates the vacuum thanks to αµ`−n but the second doesn’t vanish, so Eq. (2.186)

becomes

2
(α′

2

) 1
2

: eik·X(w) :
(
δn0 + δn`)α` · k . (2.187)

Inserting this into Eq. (2.184) and expanding c(z) in modes, we see that the second term

of Eq. (2.179) becomes

N
2

(α′
2

) 1
2
∑
`≤−1

c−`α
µ
−1c1 : eik·X : α` · k|0; 0〉 (2.188)

|0; 0〉 is annihilated by k · α` for ` ≥ 0 and by c−` for ` ≤ −2, while for ` = −1 the

expression vanishes due to the two factors of c1. Therefore since both Eq. (2.185) and

Eq. (2.189) vanish, so does the second term in Eq. (2.179).

The T gh term in Q|Sµ1 〉 is equal to∮
dz

2πi
: c(∂c)b :

∣∣∣
z
Nαµ−1|k〉 (2.189)

= Nαµ−1 : eik·X :
∣∣∣
0

∑
`,m,n

(1−m)δ`+m+n,0 : c`cmbn : c1|0〉 .

Since `+m+ n = 1, at least one of the operators c`, cm, bn is an annihilation operator or

vanishes due to nilpotence, but in the case n = −1, bn doesn’t anti-commute past c1 and

43



we need to use b−1c1|0; 0〉 = |0; 0〉. Then the n = 1 term in Eq. (2.189) is

Nαµ−1 : eik·X :
∣∣∣
0

∑
`

` : c`c(1−`) : |0〉 = −c0|Sµ1 〉 (2.190)

which cancels the ` = 0 term from Eq. (2.179). Therefore Q|Sµ1 〉 is given completely by

Eq. (2.183).

Next we can find the action of Q on |S2〉. The first term coming from the “TX” part

of Eq. (2.175), i.e. ∮
dz

2πi
c(z)

(
− 1

4α′
∂X · ∂X

)∣∣∣
z
c−1c1 : eik·X :

∣∣∣
0
|0; 0〉 (2.191)

can be calculated using the OPE of ∂Xµ(z) with : eik·X(w) :. To get a normal-ordered

expression, we must commute the positive frequency operators αµm≥0 past : eik·X(w) :, using

the mode expansion for ∂Xµ(z) in Eq. (2.132) and the commutator in Eq. (2.181), giving

us a geometric series in w/z and w/z which can be evaluated at w = 0 yielding

∂Xµ(z) : eik·X(0) : = − i

z
α′kµ : eik·X(0) : + : ∂Xµ(z)eik·X(0) : , (2.192)

which gives us the OPE

∂Xµ(z) : eik·X(0) : ∼ − i

z
α′kµ : eik·X(0) : . (2.193)

Inserting this in Eq. (2.191) and then finding the residue of the contour integral after

expanding c(z) and the second ∂Xµ(z) in modes, we see that Eq. (2.191) is equal to

1

2

(
α′

2

) 1
2

kµ
∑
n∈Z

cnα−nc−1c1 : eik·X :
∣∣∣
0
|0; 0〉 . (2.194)

Now, cn annihilates the vacuum for n ≥ 2 while a−n annihilates the vacuum for n ≤ 0

(as before, there are terms coming from commuting it past : eik·X : but these are all

proportional to k2 = 0). The only remaining contribution comes from n = 1, but this

term also vanishes because it contains two copies of c1, i.e. , the “TX part” of Q|S2〉 is

zero.

To compute the second term in Q|S2〉 coming from T gh, we expand b(z) in modes and

find ∮
dz

2πi
c(∂c)b

∣∣∣
z
c−1c1 : eik·X :

∣∣∣
0
|0; 0〉 . (2.195)

It can be seen that this expression vanishes unless n = 1 or n = −1; the contribution

from these two terms sums to give The only non-zero terms come from n = −1 and n = 1

which sum to give

1

2
∂2(c∂c)c : eik·X :

∣∣∣
0
|0; 0〉 − 1

2
c(∂c)∂2c : eik·X :

∣∣∣
0
|0; 0〉 , (2.196)
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but this also vanishes because ∂2(c∂c)c = c(∂c)(∂2c), and therefore the “T gh part” and

hence all of Q|S2〉 is equal to zero.

Lastly, we should calculate Q|S3〉. Beginning with the contribution from the “T gh

part” of Q, we expand the fields in modes, obtaining∑
`,m,n

(1−m)δ`+m+n,0 : c`cmbn : eik·X |0; 0〉 (2.197)

where we’ve used b−1c1|0; 0〉 = |0; 0〉. As above, at least one of the operators is an an-

nihilation operator because of the Kronecker δ, so all terms in the sum vanish and the

contribution from this term is zero.

To calculate the other term coming from the “TX part” of Q, we use the OPE of

∂Xµ(z) with : eik·X(w) : in Eq. (2.193). Using this OPE to replace ∂Xµ(z) : eik·X(0) :, we

find

1

2

(α′
2

) 1
2kµ

∑
m,n∈Z

cmα
µ
n

∮
dz

2πi

1

zm+n+1
: eik·X :

∣∣
0
|0; 0〉

=
1

2

(α′
2

) 1
2kµ

∑
n∈Z

c−nα
µ
n : eik·X :

∣∣
0
|0; 0〉 (2.198)

Now, |0; 0〉 is annihilated for all values of n 6= −1 (k · αn doesn’t commute with : eik·X :

but as before, the commutators are all proportional to k2 = 0). Q|S3〉 is therefore equal

to the n = −1 term in Eq. (2.198), and we have

Q|S3〉 =
1

N
1

2

(α′
2

) 1
2kµ|Sµ1 〉 . (2.199)

To summarize, the action of Q on the massless sector of the bosonic string is given by

Qαµ−1|k〉 ∝ k
µc−1|k〉 ; Qb−1|k〉 ∝ k · α−1|k〉 ; Qc−1|k〉 = 0 , (2.200)

From this, it follows that only the 26-dimensional subspace spanned by c−1|k〉 and ε·α−1|k〉
where k · ε = 0 is Q-closed. Moreover, the two dimensional space of states spanned by

c−1|k〉 and by k · α−1|k〉 is Q-exact, and therefore the Q-cohomology of massless physical

states is 24-dimensional.

It is interesting to note that (as pointed out in section 4.3 of [62]) the action of Q on

the massless sector of the bosonic string is isomorphic to the action of the BRST variation

δB on the field content of Yang-Mills gauge theory, at least at the non-interacting level. If

Aaµ is a gauge field and ca and ca are the ghost and anti-ghost field, respectively, then we

have

δB
(
A a
µ

)
∝ ∂µc a ; δB

(
c a
)
∝ ∂ ·Aa ; δB

(
c a
)

= 0 , (2.201)

plus non-linear terms. There is a clear isomorphism between Eq. (2.201) and Eq. (2.200).

The significance of this that it motivates us to guess that the α′ → 0 limit of open string

theory matches Yang-Mills theory not only at the level of summed-up amplitudes, but
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rather that we can expect to isolate the contributions coming from the various sectors of the

worldsheet theory and find that they individually match the corresponding terms coming

from Feynman diagrams on the Yang-Mills side. We will see later that the correspondence

seems to be valid even in the interacting theory, because we can find a diagram-by-diagram

matching between the two theories even at the two-loop level.

The BRST quantization of the RNS string proceeds along analogous lines to the bosonic

string, except the construction is more complicated.

2.3 The Schottky group

The first attempts at writing down multiloop amplitudes for the bosonic string were made

in the very early days of dual resonance models [73, 5, 6, 74, 75]. These amplitudes were

constructed by sewing together multi-reggeon (i.e. open string) vertices [76, 77, 78] which

were found, in turn, by factorizing the Veneziano amplitude [23]. It was quickly noticed

that the string diagrams were integrals over the moduli space of Riemann surfaces, where

the Riemann surfaces were naturally defined using Schottky groups.

The basic idea of the Schottky group is that h-loop Riemann surfaces are represented

as the quotient of the Riemann sphere or the upper-half-plane (with a discrete set of points

removed) by h Möbius maps. Each Möbius map can be specified by three parameters;

these constitute the moduli which are integrated over.

We can also use super-projective transformations to sew handles onto the super-

Riemann sphere CP1|1 by quotienting; these SRS’s correspond to worldsheets for su-

perstring amplitudes in which NS states are propagating along the sewn handles (because

quotienting by a super-projective transformation is equivalent to sewing two NS punc-

tures). Conversely, worldsheets in which R states propagate around handles must be

formed by sewing pairs of R punctures, which correspond to a different type of singularity

in the superconformal structure of the surface (see e.g. section 4 of [60] and [79]).

2.3.1 Projective transformations

Before describing super-projective transformations and super-Schottky groups which are

the appropriate tools for super-Riemann surfaces, we recall the main points about the

analogous quantities for Riemann surfaces.

As we have seen in Eq. (2.51) and Eq. (2.52), a projective transformation maps the

Riemann sphere CP1 to itself, and can be represented in homogeneous coordinates by a

2× 2 matrix or in a local complex coordinate by a fractional linear transformation.

Let us use homogeneous coordinates (zu, zd), with z ≡ zu/zd when zd 6= 0. We are

be interested in projective transformations with two distinct eigenvectors (uu, ud)
t and

(vu, vd)
t, called fixed points2, and an eigenvalue

√
k satisfying |

√
k| < 1, where k is called

the multiplier (since detS = 1, the other eigenvalue must then equal 1/
√
k). The action

2For the sake of simplicity, when zd 6= 0, we can choose the representative with zd = 1, but one should
keep in mind that the bra and ket introduced here are projective objects, which can appear only in relations
that are unchanged when they are rescaled.
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of these transformations can be described by the following bracket notation for the points

of the Riemann surface

|z〉 =

(
zu

zd

)
, 〈z| ≡

[(
0 1

−1 0

)(
zu

zd

)]t

≡ [I|z〉]t = (zd,−zu) . (2.202)

The eigenvector associated to the eigenvalue
√
k is called the attractive fixed point, and the

other one is called the repulsive fixed point. To see why this is so, note that an arbitrary

point on CP1 can be written as a sum of the two eigenvectors, and then Sn|z〉 converges

to one of the two fixed points as n→ ±∞

|z〉 = λ1|u〉+ λ2|v〉 ⇒ Sn|z〉 = λ1

( 1√
k

)n
|u〉+ λ2(

√
k)n|v〉 (2.203)

which converges, in a projective sense, to |u〉 for n → ∞ and to |v〉 for n → −∞. With

this definition of the bra-vector we can follow the notation of [60], and introduce a skew-

symmetric bilinear form 〈w|z〉 which is proportional to the difference between the coordi-

nates of the two points. Indeed, 〈w|z〉 ≡ zuwd − zdwu = −〈z|w〉. Therefore, if zd, wd 6= 0,

〈w|z〉 = zdwd (z − w). In this language, we can write a projective transformation S in

terms of its multiplier k, and of the fixed-point kets |u〉 and |v〉, as

S = 1l +
1

〈v|u〉

[(
−k

1
2 + 1

)
|v〉〈u| −

(
−k−

1
2 + 1

)
|u〉〈v|

]
= k−

1
2

(
1l +

1− k
〈v|u〉

|v〉〈u|
)
, (2.204)

where the second form is obtained by using 1l = (|u〉〈v| − |v〉〈u|)/〈v|u〉. The sign of the

square root of k is immaterial, since both choices define the same projective transformation

(the situation will be different in the supersymmetric case). It is easy to verify that S

turns into S−1 under the exchange |u〉 ↔ |v〉 and that the bra corresponding to the ket

|Sz〉 = S|z〉 is simply 〈Sz| = 〈z|S−1, so that the bilinear form is invariant under projective

transformations: 〈Sz|Sw〉 = 〈z|w〉. A single bracket, however, is not a well-defined object,

as it depends on the representative chosen for z and w; as is well-known, one can form the

first projective invariant by using four points, since in this case all zd components cancel

in the ratio

(z1, z2, z3, z4) =
〈z1|z2〉〈z3|z4〉
〈z3|z2〉〈z1|z4〉

=
(z2 − z1)(z4 − z3)

(z2 − z3)(z4 − z1)
. (2.205)

We want to ensure S has one eigenvalue satisfying |
√
k| < 1 so we wish to exclude the

case when the two eigenvalues, say λ±, both have absolute value 1. If |λ+|2 = λ+λ+ = 1

then since λ+λ− = 1, in the case we wish to exclude we have λ+ = λ−. We can compute

the real and imaginary components

<(λ+) =
1

2
(λ+ + λ+) =

1

2
(λ+ + λ−) =

1

2
Tr(S)

=(λ+) =
1

2
(λ+ − λ+) =

1

2
(λ+ − λ−) =

1

2

√
Tr(S)2 − 4.
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Figure 2.6: Given a Möbius map and a circle separating the two fixed points, we can
partition CP1 in a natural way into a fundamental domain for S and two circular discs
containing the fixed points.

Then since
√

Tr(S)2 − 4 is pure imaginary we will have Tr(S)2 ≤ 4 in the excluded case.

Since Tr(S) is real we will also have Tr(S)2 ≥ 0 in this excluded case.

Hence, we can ensure that there is always an eigenvalue with |λi| < 1 by requiring

Tr(S)2 6∈ [0, 4]. (2.206)

Möbius maps satisfying this property are called loxodromic. If the eigenvalues are real

then is it hyperbolic.

The projective transformations we have introduced have the property that they map

circles to circles (counting lines in the complex plane as circles through the point at infinity

on the Riemann sphere) [80]. We can see this because any Möbius transformation can be

written as a composition of translation z 7→ z+ b, multiplication z 7→ az, and inversion in

the unit circle, z 7→ −1/z. Explicitly, we can decompose a general Möbius transformation

as inversion conjugated by two affine-linear maps:

z 7→ az + b

cz + d
=

(
z 7→

(
a

c
− b

d

)
z +

a

c

)
◦
(
z 7→ −1

z

)
◦
(
z 7→ c

d
z + 1

)
. (2.207)

It is obvious that translation and dilatation preserve circles. Inversion in the unit circle

preserves circles because we can show with algebraic manipulation that if3

R2 = ‖z − C‖2 = ‖z‖2(1− C̄/z − C/z̄) + ‖C‖2 (2.208)

then

R2

(R2 − ‖C‖2)2
=

1

‖z‖2
− C̄/z̄ + C/z

R2 − ‖C‖2
+

‖C‖2

(R2 − ‖C‖2)2
=

∥∥∥∥−1

z
− C̄

R2 − ‖C‖2

∥∥∥∥2

, (2.209)

so the map z 7→ −1/z takes a circle with centre C and radius R to a circle with centre
C̄

R2−‖C‖2 and radius R2/(R2 − ‖C‖2)2.

A Möbius map taking any circle C to any other circle C′ can be constructed by picking

three points on C and three points on C′, and using the fact that for any two triples

z1, z2, z3; w1, w2, w3 of points in CP1 there is a Möbius map S with S(zi) = wi, and that

3Here ‖ · ‖ denotes the absolute value of a complex number: ‖x+ i y‖ =
√
x2 + y2 for x, y ∈ R.
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a circle is completely determined by any three distinct points on it.

Consider a circle C on CP1 separating the attractive fixed point u from the repulsive

fixed point v of some projective transformation S. Then the circle C′ defined as the image

of C under S separates u from C. With these two circles we can partition CP1 into three

pieces: the region containing u bounded by C (say R); the region containing v bounded by

C′ (say R′), and the remainder (say R0) (see Fig. 2.6). This has the property that S maps

the inside of C (i.e. R) to the outside of C′ (i.e. R∪R0) and the outside of C (i.e. R0 ∪R′)
to the inside of C′ (i.e. R′). From this it follows that R0 (plus one of the two circles, C
or C′) is a fundamental domain for the action of S on CP1 − {u, v}, which is to say that

it contains exactly one representative of each equivalency class of the relation z ∼ S(z).

In particular, for S(z) = az+b
cz+d with c 6= 0 we can choose a pair of such circles C and C′

in the complex plane such that S(C) = C′ and S is an isometry at C with the Euclidean

metric. The circles are centered respectively in a/c and −d/c, and both have radius 1/|c|.
The quotient space (CP1 − {u, v})/S is a Riemann surface; it can be obtained from CP1

schematically by cutting out R and R′ and gluing together the two circles C and C′ so it

is topologically a torus. We can always make a change of coordinates such that the two

fixed points are at u = 0 and v =∞, then S has the form z 7→ S(z) = kz, so k is the sole

modulus for the torus.4

It is not actually necessary for the boundaries of the fundamental region to be circles;

they may as well be any Jordan curves with the same topology so long as one is the image

of the other under S.

Note that this is equivalent to ‘sewing’ a handle to the surface at the two points u and

v. To sew two points P1 and P2 on a Riemann surface means to take a pair of complex

coordinates charts zi which vanish at the points, i.e. zi(Pi) = 0, and then to remove the

points Pi and identify the points in rest of the two charts via z1z2 ≡ −k. k is called the

sewing parameter. We’ve already seen how a change of coordinates mapping u 7→ 0 and

v 7→ ∞ can put any Möbius map into the form z ∼ kz. z is the coordinate chart which

vanishes at u, and we can take w = −1/z to be the coordinate chart which vanishes at v.

Then the equivalence relation we are imposing takes the form zw ∼ −k, i.e. we are sewing

u to v.

Higher-loop Riemann surfaces (i.e. those with multiple handles or boundaries) can be

constructed in a similar way. For a compact Riemann surface with h handles, we take h

Möbius maps Sµ, µ = 1, . . . , h such that we can find on the Riemann sphere 2h circles Cµ,

Cµ′ satisfying Sµ(Cµ) = Cµ′ , with Cµ around the repulsive fixed point vµ and Cµ′ around the

attractive fixed point uµ.5 Let Rµ denote the region inside Cµ, let Rµ′ denote the region

inside Cµ′ , and let R0 denote the region outside all 2h circles.

The Schottky group S is the free group generated by the Sµ’s, i.e. it is the group of

all (reduced) words which can be written as a sequence of Sµ’s and their inverses. Before

quotienting C by S, we need to remove the limit set Λ, which is the set of accumulation

4The torus is usually parametrized by a modulus τ , where the torus is constructed as C/ ∼ where
w ∼ w+ 1 ∼ w+ τ . This coordinate w is related to z by z = e2πiw, so the moduli are related via k = e2πiτ .

5On CP1 there is no meaning of the inside and outside of a circle; so we need just that these statements
hold in some chart.
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Figure 2.7: Schottky circles for a genus 2 Riemann surface.

points of the orbits of S. To characterize Λ, we can consider an infinite set of nested

circles obtained by acting on the 2h defining circles with the elements of S. There is a

correspondence between circles and Schottky group words: there are 2h circles at the first

level (corresponding to the h Schottky generators and their inverses), and each circle at

the nth level has (2h − 1) of the (n + 1)th-level circles inside it, corresponding to the

fact that there are (2h − 1) ways to get a length-(n + 1) word from a length-n word by

multiplying on the left (since multiplying by the inverse of the left-most element gives

a length-(n − 1) word). We can define the precise correspondence between circles and

Schottky words recursively by saying that if α and β are two Schottky words, then the

circle Cα·β is defined as the image Tα(Cβ), and by identifying Cα = Cµ for Tα = S−1
µ and

Cα = Cµ′ for Tα = Sµ. With this definition, we see that if α is a length-n reduced word,

then if z is a point in R0, then Tα(z) lies inside the level-n circle Cα but outside all of

the level-(n + 1) circles. There are 2h(2h − 1)n−1 circles at level n. A point is in the

limit set Λ if and only if it is inside of a circle at level n for every n ∈ N. There are

uncountably many limit points; there is a 1–1 correspondence between limit points and

infinite Schottky words.

In Fig. 2.7 the first three levels of Schottky circles are shown for a genus h = 2 Riemann

surface constructed with a Schottky group generated by two Möbius maps S1 and S2. Each

level-n circle contains (2h− 1) = 3 level-(n+ 1) circles [81].

Once the limit set Λ has been substracted, we may quotient by the action of S and

we will obtain a genus-g Riemann surface. Topologically, quotienting by S is equivalent

to cutting out the insides of each of the 2h generating circles and gluing them pairwise

along their boundaries, so each pair of circles gives one handle on the quotient surface.

Conventionally, we take the aµ-cycles on the quotient surface to be homologous to the

generating circles Cµ, while the bµ-cycles go along the handles we have just added such

that bµ connects a point z to Sµ(z) on the covering surface CP1 − Λ. Fig. 2.8 illustrates

this for h = 2 handles. Note that constructing Riemann surfaces with Schottky groups

puts the aµ and bµ cycles on different footings, so the behaviour of various formulae
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Figure 2.8: Quotienting by the Schottky group to glue two handles onto a Riemann surface.

under modular transformations mixing aµ and bµ cycles is often obscured. Other ways of

constructing higher-genus Riemann surfaces, such as quotienting the upper-half plane by

a Fuchsian group [41], do not have this drawback. We can see the origin of the dimension

of moduli space in this construction: the quotient surface Σh is completely determined

by the Schottky group Sh which in turn is completely specified by listing h generating

Möbius maps. Each of these can be specified by giving three complex numbers, i.e. the

two fixed points uµ, vµ and the multiplier kµ, so we have 3h complex parameters. In fact,

some of these are redundant (as coordinates on moduli space) because we can always use

a global automorphism to fix any three points, for example, to fix u1 = 0, v1 = ∞ and

v2 = 1; the rest of the parameters are the moduli and for closed string worldsheets we find

dimC(Mh) = 3h− 3 as expected.

We are interested in open string worldsheets, so the Riemann surfaces we use are

bordered Riemann surfaces (recall that this means Riemann surfaces which are locally

biholomorphic with H, the upper-half plane). These can be constructed with Schottky

groups by starting with H instead of CP1, and then quotienting by a particular Schottky

group. Note that the Schottky group will have to map the border of H to itself, i.e. , it will

have to fix the extended real line. This implies that the fixed points and the multipliers

are all real, or equivalently, so are the PSL(2,C) matrices, i.e. this type of Schottky group

is a subgroup of PSL(2,R). The same moduli-counting argument goes through as before,

except that the moduli are all constrained to be real so 3h − 3 is the real dimension of

moduli space, i.e. it is half as big for the open string case as for the closed string case

with the same number of loops. Fig. 2.9 illustrates how an open string worldsheet can be

constructed by adding two boundaries to H with a Schottky subgroup of PSL(2,R).

As discussed in section 2.1.5, it is usually useful to formulate superstring theory on

super -Riemann surfaces; the additional structure they have requires the Schottky group

to be suitably modified.

2.3.2 Super-projective transformations

Super-projective transformations are automorphisms of the super-Riemann sphere CP1|1,

which is defined in terms of homogeneous coordinates in C2|1 by the equivalence relation
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Figure 2.9: Constructing an open string worldsheet with a Schottky subgroup of
PSL(2,R).

(z1, z2|θ) ∼ (λz1, λz2|λθ) for non-zero complex λ, where the bosonic coordinates z1 and

z2 are not allowed to vanish simultaneously. To fix the superconformal structure, we may

specify a holomorphic 1-form on CP1|1 that is homogenous of degree 2 in z1, z2|ζ; such a

form is [60]

$ = z1dz2 − z2dz1 − θdθ. (2.210)

If we use scaling symmetry to set z2 = 1 and write z1 = z, then $ = dz − θdθ which

is orthogonal to Dθ = ∂θ + θ∂z, so z|θ are superconformal coordinates for z1 6= 0. If we

define a skew-symmetric bilinear form 〈·, ·〉 on the homogeneous co-ordinates by

〈z, y〉 = z1y2 − z2y1 − ζψ (2.211)

for y = (y1, y2|ψ), then we may write $ = 〈z, dz〉. A linear map on C2|1 will therefore

preserve $, and hence the superconformal structure, if it preserves 〈·, ·〉. The group of

such transformations is OSp(1|2), which can be realised by matrices of the form

S =

 a b α

c d β

γ δ e

 (2.212)

where the 5 bosonic and 4 fermionic variables are subject to the 2 fermionic and 2 bosonic

constraints,(
α

β

)
=

(
a b

c d

)(
−δ
γ

)
ad− bc− αβ = 1 e = 1− αβ (2.213)

so the group has dimension 3|2. We can find an OSp(1|2) matrix taking u = (u1, u2|θ) and

v = (v1, v2|φ) to points equivalent to (0, 1|0) and (1, 0|0) respectively; one such matrix is

Γuv =
1√
〈u,v〉


u2 −u1 θ

v2 −v1 φ
u2φ−v2θ√
〈u,v〉

v1θ−u1φ√
〈u,v〉

√
〈u,v〉 − θφ√

〈u,v〉

 . (2.214)
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We have one bosonic degree of freedom remaining; we can stipulate that a point w =

(w1, w2|ω) is mapped to a point equivalent to (1, 1|Θuwv) where there is no freedom in

choosing the fermionic co-ordinate, which is therefore a super-projective invariant of u,v

and w. The image of w under Γuv is

Γuvw =
1√
〈u,v〉

(
〈w,u〉, 〈w,v〉

∣∣θ〈v,w〉+ φ〈w,u〉+ ω〈u,v〉+ ωθφ√
〈u,v〉

)
. (2.215)

A general dilatation of the superconformal co-ordinates corresponds to the OSp(1|2) ma-

trix

P(y) =

 y
1
2 0 0

0 y−
1
2 0

0 0 1

 , (2.216)

which leaves invariant the points (0, 1|0) and (1, 0|0). We may use a transformation like

this to scale the bosonic coordinates of Γuvw as desired, obtaining

P
( 〈w,v〉
〈w,u〉

)
Γuvw ∼

(
1, 1
∣∣∣θ〈w,v〉+ ω〈v,u〉+ φ〈u,w〉+ θωφ√

〈v,u〉〈u,w〉〈w,v〉

)
(2.217)

giving us an explicit expression for the odd super-projective invariant Θz1z2z3 :

Θz1z2z3 =
ζ1〈z2, z3〉+ ζ2〈z3, z1〉+ ζ3〈z1, z2〉+ ζ1 ζ2 ζ3√

〈z1, z2〉〈z2, z3〉〈z3, z1〉
, (2.218)

where zi = zi|ζi, as in Eq. (3.222) of [39].

As with projective transformations, super-projective transformations preserve cross-

ratios of the form

Ψ̂z1z2z3z4 =
〈z1, z2〉
〈z1, z4〉

〈z3, z4〉
〈z3, z2〉

, (2.219)

but there is a novelty in the super-projective case. In the non-supersymmetric case, any

cross-ratio of four points can be expressed simply in terms of any other cross-ratio of the

same four points, but the analogous statement does not hold. Instead, we need to include

the fermionic invariants, getting identities like

Ψ̂z1z2z3z4 + Ψ̂z1z3z2z4 − (Ψ̂z1z3z2z4)
1
2 Θz1z3z2Θz1z4z2 = 1 . (2.220)

This can be checked quickly by noting that the left-hand side is OSp(1|2)-invariant and

fixing 3|2 convenient superconformal co-ordinates e.g. z1 = 0|0, z2 = ∞|0, z3 = η|θ,
z4 = 1|φ, in which case it becomes simply

(1− η + θφ) + η −√η θ
√
η
φ = 1 . (2.221)

Note that for |k| < 1, P(k) has 0|0 as an attractive fixed point and ∞|0 as a repulsive

fixed point. Using Γuv to map a pair of points u and v to 0|0 and ∞|0 respectively, it
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follows that

S = Γ−1
uvP(k)Γuv (2.222)

has u as an attractive fixed point and v as a repulsive fixed point. Our skew-symmetric

quadratic form 〈·, ·〉 can be expressed in terms of a bra-ket notation 〈u|v〉 = −〈u,v〉 where

〈u| = (u2,−u1, θ) |u〉 = (u1, u2|θ)t (2.223)

satisfying 〈u|v〉 = −〈u,v〉. It is related to the super-difference between two points z .−w:

if |z〉 = (zλ1, λ1, ψλ1)t and |w〉 = (wλ2, λ2, ωλ2)t for λ1, λ2 6= 0, then

〈w|z〉 = λ1λ2(z .−w) = λ1λ2(z − w − ψω) . (2.224)

For cross-ratios, the λi all cancel so we can use either notation:

〈z1|z2〉
〈z1|z4〉

〈z3|z4〉
〈z3|z2〉

=
z1

.− z2

z1
.− z4

z3
.− z4

z3
.− z2

. (2.225)

The bra-ket notation has the benefit of allowing us to write S defined in Eq. (2.222) as

S = 1l +
1

〈v|u〉

[(
−k

1
2 + 1

)
|v〉〈u| −

(
−k−

1
2 + 1

)
|u〉〈v|

]
. (2.226)

S defined this way satisfies

〈S(z),u〉
〈S(z),v〉

= k
〈z,u〉
〈z,v〉

. (2.227)

2.3.3 Super Schottky groups

Quotienting CP1|1 by the action of S defined in Eq. (2.226) is equivalent to putting a pair

of NS punctures at u and v and sewing them with a sewing parameter proportional to k.

Topologically, this has the same effect (at least on the reduced space CP1) as cutting out

discs around u and v and identifying their boundaries, so this quotient adds a handle to

the surface, increasing the genus by 1. The choice of spin structure along the handle is

determined by the branch of k
1
2 .

To build a genus-h SRS, we may repeat this sewing procedure h times, choosing h

pairs of attractive and repulsive fixed points uµ = uµ|θµ, vµ = vµ|φµ and g multipliers kµ

for µ = 1, . . . , h. The super-Schottky group Sh is the group freely generated by

Sµ = Γ−1
uµvµP(kµ)Γuµvµ µ = 1, . . . , h. (2.228)

To obtain a genus h super-Riemann surface Mh, we subtract the limit set Λ (i.e. the set

of accumulation points of the orbits of Sh) from CP1|1 and then quotient by the action of

the super-Schottky group:

Mh = (CP1|1 − Λ)/Sch. (2.229)
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Note that the fixed points must be sufficiently far from each other and the multipliers suf-

ficiently small that there exists a fundamental domain with the desired topology, i.e. that

of CP1|1 with 2h discs cut out. The fixed points uµ, vµ and the multipliers kµ are moduli

for the surface, but for h ≥ 2 we can use the OSp(1|2) symmetry to fix 3|2 of these:

u1 = 0|0, v1 = ∞|0, v2 = 1|Θu1v2v1 (where Θu1v2v1 is still an unfixed modulus) so the

super-moduli space M̂h has complex dimension 3h− 3|2h− 2.

To build multi-loop open superstring worldsheets this way, we should start with the

super-disc D1|1 which can be obtained by quotienting CP1|1 by the involution z|θ 7→
z∗|θ∗, so RP1|1 is its border. A super-projective map will be an automorphism of D1|1

if it preserves RP1|1, so we should build the super-Schottky group from super-projective

transformations whose fixed points uµ, vµ are in R1|1 and whose multipliers kµ are real.

If we quotient D1|1 − Λ by h of these, then we will get a SRS with (h + 1) borders (and

no handles). The moduli space M̂open
h of such SRSs has real dimension 3h− 3|2h− 2.

For the h = 2 surfaces we are looking at, we use the OSp(1|2) symmetry to write the

fixed points as in Eq. (4.24).

Multipliers

Every element Sα of a super-Schottky group is similar to a matrix of the form P(kα) as

in Eq. (2.216) for some kα. We can find kα
1
2 using the cyclic property of the supertrace,

obtaining a quadratic equation with roots

kα
1
2 =

sTr(Sα) + 1±
√

(sTr(Sα) + 1)2 − 4

2
, (2.230)

one root being the inverse of the other. kα
1
2 is the one whose absolute value is less than 1.

We can expand the kα
1
2 as series in ki

1
2 . For h = 2, using the fixed points Eq. (4.24)

we find

k(S1S2)
1
2 = k1

1
2k2

1
2 y +O(kµ) (2.231)

= k1
1
2k2

1
2 Ψ̂u1v1u2v2 +O(kµ) (2.232)

k(S−1
1 S2)

1
2 = −k1

1
2k2

1
2
y

u
+O(kµ) (2.233)

= k1
1
2k2

1
2 Ψ̂v1u1u2v2 +O(kµ) . (2.234)

where y is defined in Eq. (4.27). Note that k(S−1
1 S2)

1
2 can be obtained from k(S1S2)

1
2 by

swapping the attractive and repulsive fixed points of S1 in the cross-ratio.

Super period matrix

The super-abelian differentials are an h-dimensional space of holomorphic volume forms

defined on a genus-h SRS. They are spanned by Ωµ, µ = 1, . . . , h normalized by their

integrals around the a-cycles:

1

2πi

∮
Aµ

Ων = δµν . (2.235)
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Their integrals around the b-cycles define the super-period matrix

1

2πi

∮
Bµ

Ων = τµν . (2.236)

The Ωµ can be expressed in terms of the super-Schottky group as (equation (21) of [9])

Ωµ(z|ψ) = [dz|dψ]
∑
α

(µ)
Dψ log

〈z|Tα|uµ〉
〈z|Tα|vµ〉

(2.237)

= [dz|dψ]
∑
α

(µ)[〈z|Φ Tα|uµ〉
〈z|Tα|uµ〉

− 〈z|Φ Tα|vµ〉
〈z|Tα|vµ〉

]
(2.238)

where the sum
∑(µ)

α is over all elements of the super-Schottky group which don’t have

S±1
µ as their right-most factor, Dψ is the superconformal derivative Dψ = ∂ψ + ψ∂z, and

Φ is the matrix

Φ =

 0 0 1

0 0 0

0 −1 0

 . (2.239)

Φ has the property that if |z〉 = (λz, λ|λψ)t then

Dψ〈z|w〉 = 〈z|Φ|w〉 (2.240)

and that the map z|ψ 7→ 〈z|w〉|〈z|Φ|w〉 is superconformal. The super period matrix can

be computed as

τµν =
1

2πi

[
δµν log kµ − (ν)

∑
α

(µ) log
〈uν |Tα|vµ〉〈vν |Tα|uµ〉
〈uν |Tα|uµ〉〈vν |Tα|vµ〉

]
. (2.241)

The sum is over all elements of the super-Schottky group which don’t have S±1
ν as their

left-most element or S±1
µ as their right-most element.

We can compute the leading terms in the small-kµ expansion for τµν . For h = 2, using

the fixed points in Eq. (4.24) we find

2πi τ =

 log k1 − 2k
1
2
2

(
1− 1

u

)
θφ log u

log u log k2 − 2k
1
2
1

(
1− 1

u

)
θφ

+O(kµ) (2.242)

and so

4π2 det(Im τ ) = log(k1) log(k2)− log(u)2 (2.243)

− 2(1− 1/u)
(

log(k1)k
1
2
2 + log(k2)k

1
2
1

)
θφ+O(kµ) .
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u1 v1

CP1|1/Z2

S1

V2V1

∼S
b1

V2V1

Σ1

Figure 2.10: The construction of a one-loop two-point worldsheet with a super-Schottky
group.

2.4 Example: two-point gluon amplitude at one loop

Let us consider an example super-string calculation in the RNS formalism in which we

carry out an integration over super-moduli space with a potential ambiguity. Instead of

considering a two-loop vacuum amplitude, we will consider a one-loop two point amplitude.

The calculations are similar because both involve integration over the positions of four NS

punctures positioned on the boundary of the super-upper-half plane CP1|1/(z|φ ∼ z∗|φ),

characterized by one bosonic and two fermionic super-projective invariants. In the two-

loop vacuum case, the NS punctures are sewn in pairs while in the one-loop two-point

case, two of the NS punctures V1 and V2 correspond to the position of vertex operators

where external states are emitted (see Fig. 2.10).

We want to calculate the one loop diagram contributing to the two-point function

for gluons, evaluated in the limit of vanishing momentum. The diagram must vanish

to preserve gauge invariance: the reason is that if the diagram doesn’t vanish, then the

renormalized lagrangian will gain a mass term of the form 1
2m

2AµA
µ which is not invariant

under gauge transformations of the form Aµ 7→ Aµ + ∂µΛ [82].

Let us consider the worldsheet superfield

Xµ(z|θ) = Xµ(z) + iθψµ(z) . (2.244)

The amplitude is calculated by inserting two vertex operators corresponding to the external

gluon states. Since we want to show that the diagram vanishes, the overall normalization

of the vertex operators is not important, and we can write them in terms of the superfield

Xµ as:

V [Xµ] ∝ εµDXµeik·X = iεµ (ψµ − θ(i∂zXµ + k · ψψµ)) eik·X (2.245)

where D is a the super-covariant derivative Eq. (2.84). The integral which we have to

show vanishes is given in terms of the super-points Z1 = 1|θ and Z2 = z|φ by

ε1µε
2
ν

∫
dz dθ dφ 〈DXµ(Z1)DXν(Z2) 〉

= ε1 · ε2
∫

dz dθ dφDZ1DZ2GN (Z1, Z2)
∣∣∣ Z1=1|θ
Z2=z|φ

(2.246)
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in terms of the worldsheet propagator with Neumann boundary conditions which is given

by equation (25) of [9]

GN (Z, Y ) = log E(X,Y ) +
1

2

g∑
µ,ν=1

∫ Z

Y
Ωµ(2π Im τ )−1

µν

∫ Y

Z
Ων (2.247)

where E is the super-symmetric generalization of the prime form (Eq. (2.64)) expressed in

the super-Schottky parametrization as:

E(Z, Y ) = (Z .− Y )
∏
α

′Z .−Tα(Y )

Z .−Tα(Z)

Y .−Tα(Z)

Y .−Tα(Y )
, (2.248)

The notation
∏′
α means that the product is over all primary classes in the super Schottky

group. A primary class is an equivalence class of primitive super Schottky group elements,

i.e. those which cannot be written as a power of another super Schottky group element,

Sα 6= Snβ (n ≥ 2). Two primitive elements are in the same primary class if one is related

to the other by cyclic permutation of its factors, or by inversion. Any h primary classes

generate the h-loop super Schottky group.

Ωµ is the supersymmetric generalization of the abelian differentials (see Eq. (2.238))

and τ is the super-period matrix (see Eq. (2.241)). In our case, we have only one generator

S1(Z) = S(z|θ) = kz|k
1
2 θ. Then we can calculate the sole abelian differential as

Ω1(Z) = dZDZ log
Z .− Uµ
Z .− Vµ

= dZDZ logZ +O(k) , (2.249)

since Tα = Id is the only super-Schottky group element whose right-most factor isn’t S±1
1 .

The sole entry in the super-period matrix is given by

2πImτ11 = − log k +O(k) . (2.250)

Since there is only one generator for the Schottky group, the expression for the prime form

becomes simply

E(Z, Y ) = (Z .− Y )
∏
n>0

Z .− Sn(Y )

Z .− Sn(Z)

Y .− Sn(Z)

Y .− Sn(Y )
(2.251)

while the other term that contributes to the propagator can be evaluated using Eq. (2.250)

as

1

2

1∑
µ,ν=1

∫ Z

Y
Ωµ(2πImτ )−1

µν

∫ Y

Z
Ων =

1

2 log k

(
log

y

z

)2
. (2.252)

Putting these together into the expression Eq. (2.247) for the propagator, we find

GN (Z, Y ) = log

[
(Z .− Y )

∏
n>0

Z .− Sn(Y )

Z .− Sn(Z)

Y .− Sn(Z)

Y .− Sn(Y )

]
+

1

2 log k

(
log

y

z

)2
. (2.253)
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To calculate the double derivative of the propagator appearing in Eq. (2.246), we tem-

porarily write Zi = zi|θi so that it makes sense to differentiate with respect to the bosonic

part of Z1 (which it doesn’t if it’s fixed equal to 1), then we find

DZ1DZ2

(
log

z1

z2

)2

= −2θ1θ2
1

z1z2
(2.254)

and when reinstating the gauge-fixed values of Zi and carrying out the integrals, this is

just equal to∫
dz dθ dφDZ1DZ2

1

2 log k

(
log

z1

z2

)2 ∣∣∣ Z1=1|θ
Z2=z|φ

=
1

log k

∫ 1

k
d log z = −1. (2.255)

For the other term, we note

DZ1DZ2 log

[
(Z1

.− Z2)
∏
n>0

Z1
.− Sn(Z2)

Z1
.− Sn(Z1)

Z2
.− Sn(Z1)

Z2
.− Sn(Z2)

]
(2.256)

= DZ1DZ2 log(Z1
.− Z2) +

∑
n>0

[
DZ1DZ2 log(Z1

.− Sn(Z2))

+DZ1DZ2(logZ2
.− Sn(Z1))

]
,

where terms which are independent of one of either Z1 or Z2 vanish because they are

annihilated by one of the two derivatives. Writing Sn(z|θ) = knz|k
n
2 θ, we have

DZ1DZ2 log(Z1
.− Sn(Z2)) =

1

k−
n
2 z1 − k

n
2 z2 − θ1θ2

, (2.257)

then by swapping Z1 ↔ Z2 and using the fact that the DZi are fermionic objects which

anti-commute, we can use Eq. (2.257) to get a similar expression for DZ1DZ2 log(Z2
.−

Sn(Z1)), then both can be submitted into Eq. (2.256) to get an expression for the double

derivative of the super prime form,

DZ1DZ2 log E(Z1, Z2) =
∑
n∈Z

1

k−
n
2 z1 − k

n
2 z2 − θ1θ2

, (2.258)

so the integral to be evaluated is now∫
dz dθ dφ (DZ1DZ2 log E(Z1, Z2))

∣∣∣ Z1=1|θ
Z2=z|φ

=
∑
n∈Z

∫
dz dθ dφ

1

k−
n
2 − k

n
2 z − θφ

. (2.259)

Now let’s say we näıvely ignore the need to fix the right bosonic variables and choose the

integration region to be z ∈ [k, 1]. Then we get

∑
n∈Z

∫ z=1

z=k
dz dθ dφ

1

k−
n
2 − k

n
2 z − θφ

=
∑
n∈Z

[
1

1− knz

]1

k

(2.260)

This expression is ill-defined because the n = 0 and n = −1 terms contains a division by

0 from the z = 1 and z = k boundaries, respectively. Even if we use a cut-off to regularize
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by changing the integration region for the bosonic modulus to z ∈ [k + ε, 1− ε], then the

partial sums are given by

SN =
N∑

n=−N

(
1

1− kn(1− ε)
− 1

1− kn(k + ε)

)
=
kN + 1

kN − k
+

1 + k

ε
+O(ε0) . (2.261)

which still diverges in the limit ε→ 0.

The proper approach to computing the integral is to consider the integrand ν as an

integral form which is the only type of mathematical object that can be meaningfully inte-

grated on a supermanifold (see [83] for an explanation of this fact) such as the supermoduli

space M̂ os
1,2 and rewrite it as an exterior derivative, ν = dω. The integral should then be

evaluated via the supermanifold version of Stokes’ theorem by evaluating the integral of

ω over the boundary of supermoduli space, ∂M̂ os
1,2. Formally, the result of rewriting the

right-hand-side of Eq. (2.259) with Stokes’ theorem is

∑
n∈Z

∫
dz dθ dφ

1

k−
n
2 − k

n
2 z − θφ

=
∑
n∈Z

(−k−
n
2 )

∫
∂

dθ dφ log
(
k−

n
2 − k

n
2 z − θφ

)
. (2.262)

The purely fermionic integral at the 0|2-dimensional boundary is dependent upon the

the choice of which bosonic variable is held fixed, and therefore we should express the

integrand in terms of the appropriate variables for each boundary. Good bosonic variables

to fix are those which vanish (or diverge to infinity) at the boundary. We can define our

upper limit of integration as the locus Z2 = Z1 and our lower limit of integration as the

locus Z2 = S(Z1), so we can define two new bosonic moduli:

Y0 = Z2
.− Z1 Y1 = Z2

.− S(Z1) (2.263)

= (z − 1 + θφ, φ− θ) ; = (z − k + k
1
2 θφ, φ− k

1
2 θ) , (2.264)

whose bosonic parts

y0 = z − 1 + θφ ; y1 = z − k + k
1
2 θφ (2.265)

define the two boundary components via y1 = 0 and y0 = 0. Expressing z in terms of

these variable, we can re-write the integrand as either

log
(
k−

n
2 − k

n
2 z − θφ

)
= log(k−

n
2 − (1 + y0)k

n
2 ) +

θφ(k
n
2 − 1)

k−
n
2 − k

n
2 (y0 + 1)

(2.266)

or

= log(k−
n
2 − (k + y1)k

n
2 ) +

θφ(k
n+1
2 − 1)

k−
n
2 − k

n
2 (y1 + k)

, (2.267)

near y0 = 0 and y1 = 0, respectively. Let us evaluate the fermionic integral at the two

boundary components initially with a small cutoff y0 = y1 = ε to avoid an infinite log(0)

divergence, although it will simply be annihilated by the Berezin integral. Writing down
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the difference of the two boundary components, we get

∫
∂

dθ dφ log
(
x−n − xnz − θφ

)
= − lim

ε→0

(
k
n
2 − 1

k−
n
2 − k

n
2 (ε+ 1)

− k
n+1
2 − 1

k−
n
2 − k

n
2 (ε+ k)

)
(2.268)

=


− 1

1+k
1
2

n = 0

1

1+k
1
2

n = −1

k
n
2

1+k
n
2
− k

n
2

1+k
1+n
2

otherwise .

(2.269)

Summing this up multiplied term-by-term with the factor of (−k−
n
2 ) in Eq. (2.262), we

arrive at∫
dz dθ dφ (DZ1DZ2 log E(Z1, Z2))

∣∣∣ Z1=1|θ
Z2=z|φ

= −
∑
n∈Z

(
1

1 + k
n
2

− 1

1 + k
1+n
2

)
. (2.270)

The partial sums are given by

−
N∑

n=−N

(
1

1 + k
n
2

− 1

1 + k
1+n
2

)
= − k

N
2

1 + k
N
2

+
1

1 + k
N+1

2

. (2.271)

Since |k
1
2 | < 1 this converges as N →∞, so Eq. (2.270) is simply equal to 1. Adding this

to 2.255, which we calculated as −1, we see that the super-moduli space integral of the

double derivative of the propagator is given by∫
dz dθ dφ

(
DZ1DZ2 log GN (Z1, Z2)

)∣∣∣ Z1=1|θ
Z2=z|φ

= 0 , (2.272)

so the diagram vanishes and gauge invariance is preserved.

Note that this argument does not hold if the sector of the worldsheet theory under

consideration has Dirichlet boundary conditions instead of Neumann boundary conditions

in that case the worldsheet propagator is no longer given by GN as in Eq. (2.247), but

rather by the Dirichlet propagator which only depends on the prime form:

GD(Z, Y ) = log E(X,Y ) . (2.273)

In this case, the −1 from Eq. (2.255) no longer appears to cancel the 1 from Eq. (2.270),

which means that the one-loop correction to the two-point function is finite and non-zero.

However, this is not a problem as it would have been with Neumann boundary conditions,

since Dirichlet boundary conditions correspond to scalar fields in the spacetime effective

theory which are not described by a gauge invariant Lagrangian and therefore may undergo

mass renormalization without a problem; in this case the mass renormalization will be of

the order g2/α′.
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Chapter 3

Strings in background fields

3.1 Free open strings in a constant background magnetic

field

In this section we calculate the effect of the background magnetic field on the worldsheet

theory; the original calculations were done for bosonic strings in [84, 85, 86] and [87].

Superstring effective theories for spacetime gauge fields were studied in [88, 89] and [90].

We follow the calculation in [91, 92] and chapters 16 and 19 of [19]. Consider an open

bosonic string propagating in a fixed background Kalb-Ramond field. The string can be

described by the Euclidean worldsheet action in conformal gauge as

Sbos = − 1

4πα′

∫ ∞
−∞

dτ

∫ π

0
dσ
(
∂αXM∂αX

NGMN + i εαβ∂αX
M∂βX

NBMN

)
. (3.1)

where εαβ is the antisymmetric symbol with εστ = 1. This action is not, however, gauge

invariant: under a gauge transformation BMN → BMN + ∂MΛN − ∂NΛM , it transforms

as Sbos → Sbos + δSbos, where

δSbos = − 1

2πα′

∫ ∞
−∞

dτ

∫ π

0
dσ i ∂σX

M∂τX
N
(
∂MΛN − ∂NλM

)
. (3.2)

We can rewrite δS in terms of total derivatives with the use of the chain rule: ∂αX
R∂RΛS =

∂αΛS . The contribution from the τ derivative vanishes when we assume the gauge trans-

formation tends to 0 as τ → ±∞, while the contribution from the σ derivative gives

δSbos = − 1

2πα′

∫ ∞
−∞

dτ
[
i ΛM∂τX

M
]π
σ=0

, (3.3)

which doesn’t vanish in general. Gauge invariance can be imposed by coupling the end-

points of the string to the U(1) gauge field Aµ of the D-brane to which they are attached

by adding a boundary term to the action: Sbos → S′bos = Sbos + S∂ bos, where

S∂ bos = i

∫
σ=0

dXM AM − i

∫
σ=π

dXM AM . (3.4)
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The action is then invariant under the combined gauge transformation

BMN → BMN + ∂MΛN − ∂NΛM ; AM → AM −
ΛM
2πα′

. (3.5)

Note that since this gauge transformation is not necessarily of the form Λ = dφ, the D-

brane world-volume U(1) field strength F = dA is not gauge invariant in general; only the

combination F = B + 2πα′F is.

We can find the equation of motion for the action S′bos by solving δS′bos = 0. Under

a variation XM → XM + δXM which vanishes at τ → ±∞, the bulk part of the action

varies as Sbos → Sbos + δSbos where

δSbos = − 1

2πα′

∫ ∞
−∞

dτ
[
δXM

(
GMN∂σX

N + iBMN∂τX
N
)]π
σ=0

+
1

2πα′

∫ ∞
−∞

dτ

∫ π

0
dσ δXM ∂α∂

αXM ; (3.6)

similarly the coupling between the endpoints and the U(1) gauge field Aµ varies as S∂ bos →
S∂ bos + δS∂ bos with

δS∂ bos = −i δ

∫ ∞
−∞

dτ
[
AM∂τX

µ
]π
σ=0

= −i

∫ ∞
−∞

dτ
[
δXMFMN∂τX

N
]π
σ=0

, (3.7)

where we’ve used δAM = ∂NAMδX
N . By the fundamental lemma of the calculus of

variations, the equation of motion can be read off from the second line of Eq. (3.6)

as ∂α∂
αXM = 0. For the “Dirichlet directions” transverse to the D-branes, we have

0 = δXI |σ=0,π so the boundary contribution vanishes automatically. In the “Neumann

directions” this doesn’t hold but the boundary contribution coming from Eq. (3.7) and

the first line of Eq. (3.6) must still vanish, so we get the boundary condition

(
Gµν∂σ + iFµν∂τ

)
Xν
∣∣∣
σ=0,π

= 0 . (3.8)

We can rewrite everything in terms of the complex worldsheet coordinates Eq. (2.28); then

Eq. (3.8) becomes

(
(Gµν + F (σ)

µν ) ∂ − (Gµν −F (σ)
µν ) ∂

)
Xν
∣∣∣
Im(z)=0

= 0 . (3.9)

where we’ve used z = z. We have ∂σ∂σ + ∂τ∂τ = 4|z|2 ∂∂ so the equation of motion

becomes ∂∂Xµ = 0. The boundary conditions Eq. (3.9) can be recast in terms of a

‘reflection matrix’ R(σ) as

∂Xµ
∣∣
Im(z)=0

=
(
R(σ)

)µ
ν ∂X

ν
∣∣
Im(z)=0

; R(σ) =
(
G−F (σ)

)−1(
G+ F (σ)

)
. (3.10)

We can solve the equation of motion with these boundary conditions in terms of chiral

fields yµ(z, z) = yµ(z) which are sections of a holomorphic vector bundle on C \ {0} with
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Im(z)

Re(z)

yµ(z)

yµ(z) 0

Figure 3.1: Complex conjugate paths between the positive and negative real axes.

non-trivial monodromy around z = 0 given by a ‘monodromy matrix’ R:

yµ(e2πiz) = Rµν y
ν(z) ; R =

(
R(π)

)−1(
R(0)

)
, (3.11)

by writing

Xµ(z, z) = qµ +
1

2

(
yµ(z) +

(
R(0)

)µ
ν y

ν(z)
)
. (3.12)

This clearly satisfies Eq. (3.10) at the boundary σ = 0. To verify that the boundary

condition as σ = π is satisfied, we consider ∂yµ(z) and ∂yµ(z) evaluated at a point on

the negative real axis, where the branch is defined by requiring continuity for z in the

upper-half-plane. As z moves along a path in the upper-half plane, z will move along the

complex conjugate path in the lower-half plane, and therefore when the paths meet at the

negative real axis, ∂yµ(z) will be on a different branch from ∂yµ(z) (see Fig. 3.1), so we

have

∂yµ(z)
∣∣
Im(z)=0

= Rµν ∂y
ν(z)

∣∣
Im(z)=0

, (3.13)

By inserting the expression for R in Eq. (3.11) we see that this satisfies Eq. (3.10) for

σ = π; therefore Xµ in Eq. (3.12) is a classical solution in this background.

Now let’s assume a flat metric, Gµν = ηµν and assume that the background fields F
are magnetic fields in the same plane as each other, i.e. the x1–x2 plane. Let’s work

in a Lorentz frame in which F (σ)
µν = f (σ)(ηµ1η2ν − ηµ2ην1), then the reflection matrices

Eq. (3.10) take the form

R(σ) =


1 0 0

0
1−f2

(σ)

1+f2
(σ)

−2f(σ)
1+f2

(σ)

0
2f(σ)

1+f2
(σ)

1−f2
(σ)

1+f2
(σ)

1

 . (3.14)

This is just a rotation in the X1–X2 plane since we can write

1− f2
(σ)

1 + f2
(σ)

= cos(2πθ(σ)) ;
−2f(σ)

1 + f2
(σ)

= sin(2πθ(σ)) , where πθ(σ) ≡ − arctan f(σ) . (3.15)

R(σ) can be diagonalized by grouping pairs of target spacetime coordinates Xµ together
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into a complex basis (Z i, Z
i
), with

Z n = X 2i−1 − iX 2i , n = 1, . . . , D/2− 1 ; ZD/2 = X 0 − iXD , (3.16)

and Z
i ≡

(
Z i)∗. In this basis, the reflection matrices are given by

R(σ)Z1 = e−2πiθ(σ)Z1 ; R(σ)Z
1

= e2πiθ(σ)Z
1

; (3.17)

R(σ)Zi = Zi ; R(σ)Z
i

= Z
i
, i 6= 1 . (3.18)

and therefore the monodromy matrix Eq. (3.11) satisfies:

RZ1 = e2πi(θ(π)−θ(0))Z1 ; RZ
1

= e−2πi(θ(π)−θ(0))Z
1
, (3.19)

and acts trivially on the other directions.

Now, we have seen that for the free bosonic string parametrized by the upper-half-

plane, the analytic function ∂Xµ can be expanded as a Laurent series in powers of z

according to Eq. (2.132). In the case of strings with a monodromy θ ≡ θ(π) − θ(0), the

holomorphic function ∂Xµ can be expanded as a series multiplying z−n+θ, which has the

requisite monodromy properties for all n. To be precise, we use the expansion (Eq. (2.12)

of [92])

∂Zi = −i
√

2α′
( ∞∑
n=1

āin−θiz
−n+θi−1 +

∞∑
n=0

a†in+θi
zn+θi−1

)
, (3.20)

∂Zi = −i
√

2α′
( ∞∑
n=0

ain+θi
z−n+θi−1 +

∞∑
n=1

ā†in−θiz
n+θi−1

)
. (3.21)

The commutation relations Eq. (2.134) need to be modified as follows: we have

[āin−θi , ā
†j
m−θj ] = (n− θi)δijδijδn,m for n,m ≥ 1 , (3.22)

[ain+θi
, a†jm+θj

] = (n+ θi)δ
ijδn,m for n,m ≥ 0 ; (3.23)

there is a ‘twisted vacuum’ [92] |Θ〉 for which some of these are annihilation operators

satisfying āin−θi |Θ〉 = aim+θi
|Θ〉 = 0 for n ≥ 1 and m ≥ 0 while the rest are creation

operators.

3.1.1 Superstrings

We can extend the construction to strings with worldsheet fermions by appending the

action Sbos in Eq. (3.1) with the action[92]

Sferm = − i

4πα′

∫ ∞
−∞

dτ

∫ π

0
dσ χMρα∂αχ

N (GMN +BMN ) , (3.24)

where {ρα} are a basis for a two-dimensional representation of the worldsheet Clifford

algebra, and χM = (χM )†ρτ . As before, this is not gauge invariant and the combination
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Sbos +S∂ bos +Sferm is not supersymmetric, therefore we need to include a boundary term

[93], Sferm → S′ferm = Sferm + S∂ ferm, where

S∂ ferm = − i

2

∫ ∞
−∞

dτ
[
χρτχNF

(σ)
MN

]π
σ=0

. (3.25)

In terms of the chiral spinors χ± defined in Eq. (2.67) and the monodromy matrices R(σ)

defined in Eq. (3.10), the boundary conditions become[92]

χM−
∣∣
σ=0

=
(
R(0)

)M
Nχ

N
+

∣∣
σ=0

and χM−
∣∣
σ=π

= −η
(
R(π)

)M
Nχ

N
+

∣∣
σ=π

, (3.26)

where η = 1 for the NS sector and η = −1 for the R sector. In the spacetime basis in which

the monodromy matrix is diagonal, in terms of the upper-half-plane parametrization of

the open string worldsheet, we can solve Eq. (3.26) in terms of sections of a spin bundle

on the worldsheet with nontrivial monodromy satisfying

Ψi(e2πiz) = ηe2πiθΨi(z) ; Ψ̄i(e2πiz) = ηe−2πiθΨ̄i(z) . (3.27)

with the mode expansion

Ψi(z) =
√

2α′
∞∑
n=ν

(
Ψ̄i
n−θiz

−n−θi− 1
2 + Ψ†in+θi

zn+θi− 1
2
)
, (3.28)

Ψ̄i(z) =
√

2α′
∞∑
n=ν

(
Ψi
n+θi

z−n−θi−
1
2 + Ψ̄†in−θiz

n−θi− 1
2
)
, (3.29)

where ν = 0 for the R sector and ν = 1
2 for the NS sector. The modes satisfy the

anti-commutation relations [92]

{Ψi
n+θi

,Ψ†im+θi
} = {Ψ̄i

n−θi , Ψ̄
†i
m−θi} = δijδnm for n,m ≥ ν . (3.30)

Ψ and Ψ̄ are related to χ± via χM+ (z) = z
1
2ψM+ (z) and χM− (z̄) = z̄

1
2ψM− (z̄).

3.2 Higher loop string diagrams in background fields

Free strings propagating in a constant background field can be described by giving the

Xµ(z|θ) = Xµ(z) + iθψµ(z) superfield a non-trivial monodromy around z = 0 on the

complex plane.

For higher-loop amplitudes, the situation is similar. A h-loop open string worldsheet

has (h+ 1) boundaries, potentially attached to (h+ 1) different D branes, but the Xµ su-

perfields living on the worldsheet are sensitive only to the difference between the strengths

of the background fields living on each D brane—assuming that the spacetime reflection

matrices associated to each boundary commute with each other, which is an assumption

we are making.

For the two-loop vacuum amplitudes which we are computing, the string worldsheets

can end on (up to) three D branes, each of which supports a background field of the form
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ε1 ε2

B1 B2

B3

Σ Σ

Figure 3.2: Open string worldsheets coupled to D-branes with background fields have
compact Riemann surfaces with non-trivial monodromies as their doubles.

Eq. (4.1). Grouping the worldsheet fields X1 and X2 together as Z± = 1√
2
(X1 ± iX2),

we find that the worldsheet field Z on the double of the bordered Riemann surface (which

is a genus h = 2 compact Riemann surface) is a section of a line bundle with non-trivial

monodromies around the two bi-cycles. To be precise, if the three open string worldsheet

boundaries have background fields of the form in Eq. (4.1) whose strength is given by

Bi as indicated in the first diagram in Fig. 3.2, then the worldsheet fields Z± will have

monodromy e±2πiεi around the homology cycles on the double surface as indicated in the

second diagram of Fig. 3.2, where the relation between Bi and εj is given by

tan(πε1) = 2πα′(B1 −B3) ; tan(πε2) = 2πα′(B3 −B2) . (3.31)

In particular, for the Z± sector of the worldsheet theory the abelian differentials need

to be modified to account for the twists; they should be replaced with Prym differentials

which are holomorphic sections of a line bundle on the SRS with the same non-trivial

monodromies around the homology cycles. Since the period matrix is defined in terms of

the abelian differentials, it too will have to be modified.

The twisted period matrix on a Riemann surface

It was shown how to write down Prym differentials for Riemann surfaces in terms of the

Schottky group using the sewing procedure in [51] and [16]; the periods of these differentials

were first studied in [16]; we compute them with a different method used in [94] which we

will modify for use with superstrings.

The space of Prym differentials is (h − 1)-dimensional on a surface with h handles,

so the twisted period matrix will be an (h − 1) × (h − 1) matrix. In our case, h = 2 so

the twisted period matrix is just one number, which can be shown to be given by the

expression [94]

τ~ε =

{
e−iπ(ε1+ε2)

sin(π(ε1 + ε2))

∫ η

0
e2πi∆z ·~ε(1− e2πi(~ε·τ)2) Ω~ε·τ1 (z)

}
+ (εµ → −εµ) . (3.32)

where the monodromies around the a-cycles are trivial and the monodromies around the

b-cycles are given by εµ, and the two Schottky generators are taken to have fixed points
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(η1, ξ1) = (0,∞) and (η2, ξ2) = (η, 1). In Eq. (3.32), ∆z
µ is the vector of Riemann constants

and Ω~ε·τ1 is the Prym differential with monodromy (~ε · τ)µ along the aµ homology cycle.

Here τ is the period matrix.

∆z
µ can be expressed in the Schottky parametrization as (Eq. (A.21) of [8])

∆z
µ =

1

2πi

{
−1

2
log kµ − πi +

g∑
ν=1

(ν)
∑
α

(µ) log
ξν − Tα(ηµ)

ξν − Tα(ξµ)

z − Tα(ξµ)

z − Tα(ηµ)

}
(3.33)

where the second sum (ν)
∑

α
(µ) is over all elements of the Schottky group which have

neither S±1
ν as their left-most element nor S±1

µ as their right-most element.

A basis of (h− 1) Prym differentials with monodromy εµ along the aµ homology cycle

can be expressed as (Eq. (3.11) of [94])

Ω~εν(z) = ζ~εν(z)− 1− e2πiεν

1− e2πiεh
ζ~εh(z) ν = 1, . . . , (h− 1) . (3.34)

Here ζ~εµ are a set of h 1-forms with the same monodromy, which are holomorphic every-

where except some arbitrary base point z0, defined as (Eq. (3.15) of [94])

ζ~εµ(z) =
(∑

α

(µ)
e2πi(~ε·Nα+εµ)

[ 1

z − Tα(ηµ)
− 1

z − Tα(ξµ)

]
(3.35)

+ (1− e2πiεµ)
∑
α

e2πi~ε·Nα
[ 1

z − Tα(z0)
− 1

z − Tα(ααµ)

])
dz

where the first sum is over all Schottky group elements which don’t have S±`µ as their right-

most factor and the second sum is over all Schottky group elements. Also in Eq. (3.35),

aαµ =

ηµ if Tα = TβS
`
µ with ` ≥ 1

ξµ otherwise,
(3.36)

and Nµ
α counts how many times each Schottky generator appears in Tα, defined by Nµ

α = 0

for Tα = Id and Nµ
α = Nµ

β ± 1 for Tα = S±1
µ Tβ.

Note that Ωε
µ defined in Eq. (3.34) is not the same as Ωε·τ

µ which appears in Eq. (3.32);

to get that we need to replace εµ with (ε · τ)µ everywhere it appears.

3.2.1 The twisted period matrix on a super Riemann surface

To supersymmetrize τ~ε, we find supersymmetric extensions of ∆z
µ and Ωε

µ, replace the

period matrix τ with the super-period matrix τ in the phases e2πi(ε·τ)µ , and replace the

integration between the fixed points 0 = η1 and η = η2 with an integration between the

super fixed points 0|0 = u1 and u|θ = u2.

To supersymmetrize ∆z
µ, we need to replace the cross-ratios in Eq. (3.33) with super-

projective invariant cross-ratios, and replace the fixed points ηµ, ξµ with uµ = uµ|θµ,

vµ = vµ|φµ, and replace the base point z0 with a super-point z = z|ψ. The formula
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becomes, then,

∆z
µ =

1

2πi

{
−1

2
log kµ − πi +

g∑
ν=1

(ν)
∑
α

(µ) log
〈vν |Tα|uµ〉
〈vν |Tα|vµ〉

〈z|Tα|vµ〉
〈z|Tα|uµ〉

}
. (3.37)

For our purposes, we want to compute ∆z
µ for h = 2 with the following fixed points:

u1 = 0|0 ; v1 =∞|0 ; u2 = u|θ ; v2 = 1|φ . (3.38)

At order O(kµ
1
2 ), we find

∆z
1 =

1

2πi

{
− 1

2
log k1 − πi− log z + k2

1
2 (1− u)

( 1

u(1− z)
θψ +

1

u− z
ψφ (3.39)

+
z + uz − 2u

u(u− z)(1− z)
θφ
)
− k1

1
2k2

1
2

1− u
uz

((1− z)θψ + (u− z)ψφ)
}

+O(kµ)

∆z
2 =

1

2πi

{
− 1

2
log k2 − πi + log

1− z
u− z

+
1

u− z
θψ +

1

1− z
ψφ (3.40)

− k1
1
2

1

uz

(
(u− z)θψ + z(1− u)θφ+ u(1− z)ψφ

)
− k1

1
2k2

1
2

(1− u)2

u

( 1

u− z
θψ +

1

1− z
ψφ
)}

+O(kµ) .

Exponentiating these, we get

e2πi~ε·∆z = e−iπ(ε1+ε2)k
− ε1

2
1 k

− ε2
2

2 z−ε1
(

1− z
u− z

)ε2
× (3.41)[

1− ε1
{
− k2

1
2 (1− u)

( 1

u(1− z)
θψ +

1

u− z
ψφ+

( u

z − u
− 1

u(1− z)

)
θφ
)

− k1
1
2k2

1
2

1− u
uz

(
(1− z)θψ + (u− z)ψφ

)}
+ ε2

{ 1

u− z
θψ +

1

1− z
ψφ− k1

1
2

1

uz

(
(u− z)θψ + z(1− u)θφ

+ u(1− z)ψφ
)
− k1

1
2k2

1
2

(1− u)2

u

( 1

u− z
θψ +

1

1− z
ψφ
)}]

+O(kµ) .

The Prym differentials Ω~εµ are holomorphic differentials; the natural analogues on SRSs are

holomorphic volume forms: sections of the Berezinian bundle. Just as holomorphic differ-

entials can be written locally as dz ∂zf(z), sections of the Berezian can be written locally

as [dz|dψ]Dψ f(z|ψ), the combination being invariant under change of superconformal

coordinates [60]. We note that we can write equation Eq. (3.35) for ζ~εµ as

ζεµ(z) = dz
∂

∂z

(∑
α

(µ)
e2πi(~ε·Nα+εµ) log

[z − Tα(ηµ)

z − Tα(ξµ)

]
(3.42)

+ (1− e2πiεµ)
∑
α

e2πi~ε·Nα log
[ z − Tα(z0)

z − Tα(ααµ)

])
,

so to find the corresponding SRS volume forms we replace the expressions inside the

logarithms with their natural superconformal analogues and replace dz ∂z 7→ [dz|dψ]Dψ.
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This yields

ζ~εµ(z|ψ) = [dz|dψ]Dψ

(∑
α

(µ)
e2πi(~ε·Nα+εµ) log

[〈z|Tα|uµ〉
〈z|Tα|vµ〉

]
(3.43)

+ (1− e2πiεµ)
∑
α

e2πi~ε·Nα log
[ 〈z|Tα|z0〉
〈z|Tα|aµ〉

])
= [dz|dψ]

(∑
α

(µ)
e2πi(~ε·Nα+εµ)

[〈z|ΦTα|uµ〉
〈z|Tα|uµ〉

− 〈z|ΦTα|vµ〉
〈z|Tα|vµ〉

]
(3.44)

+ (1− e2πi~εµ)
∑
α

e2πiε·Nα
[〈z|ΦTα|z0〉
〈z|Tα|z0〉

− 〈z|ΦTα|aµ〉
〈z|Tα|aµ〉

])
where we’ve used Φ defined in Eq. (2.239), |z0〉 is an arbitrary base point, and

|aαµ〉 =

|uµ〉 if Tα = TβS
`
µ with ` ≥ 1

|vµ〉 otherwise.
(3.45)

Then we can write down a basis of (h − 1) holomorphic volume forms Ω~ε
ν(z) with the

expected monodromies along the homology cycles using the analogue of Eq. (3.34), noting

that the dependence on the base point |z0〉 cancels out:

Ω~ε
ν(z|ψ) = ζ~εν(z|ψ)− 1− e2πiεν

1− e2πiεh
ζ~εh(z|ψ) ν = 1, . . . , (h− 1) . (3.46)

We can calculate Ω~ε
ν(z|ψ) as a series expansion in

√
kµ. Truncating to finite order, we

only need to sum Eq. (3.44) over finitely many terms of the super-Schottky group, because

if the contribution from Tα is O(kα
1
2 ) and the left-most factor of Tα is not S±1

µ , then the

contribution from S±`µ Tα is O(kµ
`
2kα

1
2 ). This means that if we only want to compute to

O(
√
kµ) for h = 2 then we only need to sum over

Tα ∈ {Id,S±1
1 ,S±1

2 , (S1S2)±1, (S−1
1 S2)±1, (S1S

−1
2 )±1, (S2S1)±1} . (3.47)

We obtain, using the fixed points given in Eq. (4.24),

Ω~ε
1(z|ψ) = [dz|dψ]

[
− (1− S~ε1)S~ε2θ

(1− S~ε2)(u− z)
+

(1− S~ε1)φ

(1− S~ε2)(1− z)
(3.48)

+

(
S~ε1u(1− S~ε2)− (S~ε1 − S~ε2 − S~ε1S~ε2u+ u)z + z2(1− S~ε2)

)
ψ

(1− S~ε2)(u− z)(1− z)z

− k1
1
2

{
− (1− S~ε1)S~ε1(S~ε2θ − φ)

(1− S~ε2)z
+

(1− S~ε1)(S~ε2θ − uφ)

S~ε1(1− S~ε2)u

}
− k2

1
2

{
− S

~ε
2(1− S~ε1)θ

u− z
+
S~ε2(1− S~ε1u)φ

u− z
− (S~ε1 − u)θ

S~ε2u(1− z)

− S
~ε
2(1− S~ε1u)θφψ

(u− z)2
− (S~ε1 − u)θφψ

S~ε2u(1− z)2
− (1− S~ε1)φ

S~ε2(1− z)

}
+ k1

1
2k2

1
2

{S~ε1S~ε2(φ− S~ε1uφ− (1− S~ε1)θ)

z
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+
S~ε2(θ(1− S~ε1)− φ+ S~ε1uφ)

S~ε1u
− ((u− S~ε1)θ − (1− S~ε1)uφ)

S~ε1S~ε2u

+
S~ε1(uθ − S~ε1θ − uφ(1− S~ε1))

S~ε2uz
+

(1− S~ε1)S~ε1(1− u)θ

(1− S~ε2)u(1− z)

− (1− S~ε1)S~ε1(1− u)φ

(1− S~ε2)S~ε2u(1− z)
− (1− S~ε1)S~ε1S~ε2(1− u)(S~ε2θ − φ)

(1− S~ε2)(u− z)

− (1− S~ε1)S~ε1S~ε2(1− u)θφψ

(1− S~ε2)(u− z)2
− (1− S~ε1)2(1 + S~ε1)(1− u)θφψ

S~ε1(1− S~ε2)u(1− z)2

+
(1− S~ε1)(1− u)(uφ− S~ε2θ)
S~ε1(1− S~ε2)S~ε2(1− z)u

+
(1− S~ε1)(S~ε2)2(1− u)θ

S~ε1(1− S~ε2)u(u− z)

+
(1− S~ε1)S~ε2(1− u)θφψ

S~ε1(1− S~ε2)(u− z)2
− (1− S~ε1)S~ε2(1− u)φ

S~ε1(1− S~ε2)(u− z)

}]
+O(kµ) ,

where

S~εµ = e2πiεµ . (3.49)

In our calculation of the twisted super-period matrix, the Prym differential appears not

with the monodromies ~ε but with (~ε ·τ ). All of the dependence of Ω~ε
1 on the monodromies

enters only through the phases S~εµ, so we should replace S~εµ in Eq. (3.48) with S~ε·τµ =

e2πi(~ε·τ )µ . Using τ from Eq. (2.242), we find

S~ε·τ1 = e2πi(~ε·τ )1 = kε11 u
ε2
(

1− 2ε1k2
1
2 (1− 1/u)θφ

)
+O(kµ) , (3.50)

S~ε·τ2 = e2πi(~ε·τ )2 = kε22 u
ε1
(

1− 2ε2k1
1
2 (1− 1/u)θφ

)
+O(kµ) . (3.51)

We now have the ingredients to compute τε. We write

τ~ε =

{
e−iπ(ε1+ε2)

sin(π(ε1 + ε2))

∫ u|θ

0|0
e2πi∆z ·~ε(1− S~ε·τ2 ) Ω~ε·τ

1 (z)

}
+ (εµ → −εµ) . (3.52)

We insert Ω~ε·τ
1 (z) from Eq. (3.48) and e2πi∆z ·~ε from Eq. (3.41) and carry out the integra-

tion over ψ, which amounts to selecting the coefficients of ψ; the boundary terms don’t

contribute. We get a sum of integrals of the form

τ~ε =

{∑
I

fI(u,S~ε·τµ , kµ, εµ|θ, φ)
e−iπ(ε1+ε2)

sin(π(ε1 + ε2))

∫ u

0
dz zn

I
1−ε1(1− z)nI2+ε2(u− z)nI3−ε2

}
+ (εµ → −εµ) . (3.53)

We can evaluate these integral with the substitution z = tu, getting∫ u

0
dz

zn1−ε1(1− z)n2+ε2

(u− z)−n3+ε2
= u1+n1+n3−ε1−ε3

∫ 1

0
dt
tn1−ε1(1− ut)n2+ε2

(1− t)−n3+ε2
(3.54)

= u1+n1+n3−ε1−ε3 Γ(1 + n1 − ε1)Γ(1 + n3 − ε2)

Γ(2 + n1 + n3 − ε1 − ε2)
(3.55)

× 2F1(−n2 − ε2, 1 + n1 − ε1; 2 + n1 + n3 − ε1 − ε2;u)
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where the hypergeometric function is given by the integral representation

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−a . (3.56)

In fact we can combine the factor of 1/sin(π(ε1 + ε2)) in Eq. (3.53) with the Γ functions

in Eq. (3.55) at this stage using the identity Γ(x)Γ(1− x) sin(πx) ≡ π to obtain

1

sin(π(ε1 + ε2))

1

Γ(2 + n1 + n3 − ε1 − ε2)
=

1

π
(−1)−1−n1−n3

× Γ(−1− n1 − n3 + ε1 + ε2) (3.57)

and therefore∫ u
0 dz

zn1−ε1 (1−z)n2+ε2
(u−z)−n3+ε2

sin(π(ε1 + ε2))
=

1

π
(−1)−1−n1−n3u1+n1+n3−ε1−ε3Γ(1 + n1 − ε1) (3.58)

× Γ(1 + n3 − ε2)Γ(−1− n1 − n3 + ε1 + ε2)

× 2F1(−n2 − ε2, 1 + n1 − ε1; 2 + n1 + n3 − ε1 − ε2;u) .

This integration can be carried out for each term in Eq. (3.53). All calculations in this

section can be carried out using symbolic computation on Mathematica;1 we arrive at

the following expression for the determinant of the Prym period matrix:

τ~ε =
1

4π2
k
− ε2

2
2 k

− ε1
2

1 u−ε1−ε2Γ (−ε1) Γ (−ε2) Γ (ε1 + ε2)

×
(
ε2 2F1 (−ε1, 1− ε2;−ε1 − ε2 + 1;u) (kε11 u

ε2 − 1) (kε22 u
ε1 − 1)

+ (u− 1) 2F1 (1− ε1, 1− ε2;−ε1 − ε2 + 1;u) (ε2 − kε22 u
ε1 (ε1 (kε11 u

ε2 − 1) + ε2))
)

+
1

4π2
ε1ε2u

1
2

(−ε1−ε2)Γ (−ε1) Γ (−ε2) Γ (ε1 + ε2) 2F1 (1− ε1, 1− ε2;−ε1 − ε2 + 1;u)

×
(
k
− ε1

2
1 u−

ε2
2 − k

ε1
2

1 u
ε2
2
)(
k
− ε2

2
2 u−

ε1
2 − k

ε2
2

2 u
ε1
2
)
θφ

+
k1

1
2

4π2
k
− 3ε1

2
1 k

− ε2
2

2 u−ε1−2ε2Γ (1− ε2)
{
kε11 (−uε2) Γ (−ε1) Γ (ε1 + ε2)

× (ε1 2F1 (1− ε1, 1− ε2;−ε1 − ε2 + 1;u) + ε2 2F1 (−ε1, 1− ε2;−ε1 − ε2 + 1;u))

×
(
− kε22 u

ε1−1 − k2ε1
1 u2ε2−1 + k2ε1

1 kε22 u
ε1+2ε2 + 1

)
− Γ (2− ε1) Γ (ε1 + ε2 − 1) 2F1 (2− ε1, 1− ε2;−ε1 − ε2 + 2;u)

×
(
−k2ε1

1 u2ε2
(
1− kε22 u

ε1+1
)
− kε22 u

ε1 + u
)

+ Γ (1− ε1) Γ (ε1 + ε2) 2F1 (1− ε1, 1− ε2;−ε1 − ε2 + 1;u)

×
(
− kε11 u

ε2+1
(
kε22 k

ε1
1 u

ε1+ε2 + 1
)

+ kε11 u
ε2−1 (kε22 u

ε1 + kε11 u
ε2)

−
(

1− k3ε1
1 u3ε2

)
(1− kε22 u

ε1)
)}
θφ

+
k2

1
2

4π2

{
− u−2ε1−ε2Γ (1− ε1) Γ (−ε2 − 1) k

− 3ε2
2

2

1The Mathematica notebook should be available at http://www.samplayle.com/mathematica/

superschottky.nb or is otherwise obtainable from the author by email.

72

http://www.samplayle.com/mathematica/superschottky.nb
http://www.samplayle.com/mathematica/superschottky.nb


×
(
Γ (ε1 + ε2 + 1) 2F1 (1− ε1, 2− ε2;−ε1 − ε2 + 1;u)

− Γ (ε1 + ε2)
(

2F1 (2− ε1, 2− ε2;−ε1 − ε2 + 1;u)

− 2F1 (1− ε1, 2− ε2;−ε1 − ε2 + 1;u)
)

(1− ε1)
)

×
(
kε22

(
kε22 (ε1 − ε2 − 1)uε1 + k2ε2

2 (ε2 + 1)u2ε1 + kε11 ε1u
ε2
)
uε1−1

− kε22

(
kε22 (ε1 − ε2)uε1 + k2ε2

2 ε2u
2ε1 + ε1 + ε2

)
uε1

− kε11 (kε22 u
ε1 + 1) (kε22 (kε22 u

ε1 + ε1 − 2)uε1 + 1)uε2

+
(
kε22

(
uε1+ε2kε22 ε1k

ε1
1 + ε1 + ε2 − 1

)
uε1 − ε2 + 1

)
u+ ε2

)
k
− ε1

2
1

− u−2ε1−ε2+1Γ (3− ε1) Γ (−ε2 − 1) Γ (ε1 + ε2 − 1)

× 2F1 (3− ε1, 2− ε2;−ε1 − ε2 + 2;u) k
− 3ε2

2
2

×
(
− kε22 ((1− u)ε1 + 1)uε1 − k2ε2

2

(
1−

(
u−1 − 1

)
ε1
)
u2ε1 + k3ε2

2 u3ε1

+ kε11

(
kε22 (−uε1 + ε1 − (1− u)ε2 + 1)uε1−1

+ k2ε2
2 (−ε1 − ε2 + u (ε1 + ε2 + 1))u2ε1

− k3ε2
2 (u− (1− u)ε2)u3ε1 − ε2 +

ε2 − 1

u

)
uε2 + 1

)
k
− ε1

2
1

+ u−2ε1−ε2Γ (2− ε1) Γ (−ε2 − 1) Γ (ε1 + ε2) 2F1 (2− ε1, 2− ε2;−ε1 − ε2 + 1;u)

× k−
3ε2
2

2

(
kε22 (ε1 + u (−uε1 − ε2 + 2) + ε2)uε1

+ k2ε2
2

(
−ε1
u

+ u (ε1 − ε2) + ε2 + 2
)
u2ε1 − k3ε2

2 ((1− u)ε2 + 2)u3ε1

+ kε11

(
kε22

(
u (ε1 − ε2) + ε2 − 2− ε1

u

)
uε1 − k2ε2

2 (u (uε1 + ε2 + 2)− ε1 − ε2)u2ε1

+ k3ε2
2 (u (ε2 + 2)− ε2)u3ε1 − (1− u)ε2 + 2

)
uε2 + (ε2 − 2)u− ε2

)
k
− ε1

2
1

}
θφ

+
k1

1
2k2

1
2

4π2
(u− 1)k

− 3ε1
2

1 k
− 3ε2

2
2

{
2Γ (−ε1) Γ (−ε2 − 1) Γ (ε1 + ε2 + 2)

× 2F1 (−ε1, 1− ε2;−ε1 − ε2 − 1;u) k2ε1
1

(
u2ε1k2ε2

2 − 1
)
ε2u
−2ε1−1

+ 2Γ (−ε1) Γ (−ε2) Γ (ε1 + ε2) k2ε1
1 k3ε2

2 ε2

(
2F1 (1− ε1, 1− ε2;−ε1 − ε2 + 1;u) ε1

+ 2F1 (−ε1, 1− ε2;−ε1 − ε2 + 1;u) ε2

)
uε1−1 − Γ (2− ε1) Γ (−ε2 − 1) Γ (ε1 + ε2)

× 2F1 (2− ε1,−ε2;−ε1 − ε2 + 1;u)
(
u2ε2k2ε1

1 − 1
)
k2ε2

2 ε1u
−2ε2−1

+ Γ (1− ε1) Γ (−ε2 − 1) Γ (ε1 + ε2) k2ε2
2

×
(

2F1 (2− ε1,−ε2;−ε1 − ε2 + 1;u) (ε1 − 1)

+ 2F1

(
1− ε1,−ε2;−ε1 − ε2 + 1;u

)
(ε2 + 1)

)
u−2ε2−1

− Γ (1− ε1) Γ (−ε2) Γ (ε1 + ε2) 2F1 (1− ε1, 2− ε2;−ε1 − ε2 + 1;u) kε22

×
(
uε2
(
u2ε2ε2k

2ε1
1 +

(
u2ε2k2ε1

1 − 1
)
ε1 + ε2

)
kε11 + u

(
− uε2 (ε1 + ε2 − 1) kε11

+ u2ε2 (ε1 + 2ε2 + 1) k2ε1
1 + u3ε2 (ε1 + ε2 − 1) k3ε1

1 − ε1 + 2ε2 − 1
))
u−ε1−2ε2−1

− Γ (2− ε1) Γ (−ε2) Γ (ε1 + ε2 − 1) 2F1 (2− ε1, 2− ε2;−ε1 − ε2 + 2;u) kε22

×
(
uε2 (−ε1 + 2ε2 + 1) kε11 + u2ε2 (uε1 + ε1 + uε2 − ε2 + 1) k2ε1

1
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+ u3ε2 (ε1 + 2ε2 − 1) k3ε1
1 − (u+ 1)ε1 + uε2 + ε2 − 1

)
u−ε1−2ε2

− Γ (3− ε1) Γ (−ε2) Γ (ε1 + ε2 − 2) 2F1 (3− ε1, 2− ε2;−ε1 − ε2 + 3;u) kε22

×
(
2uε2ε2k

ε1
1 +

(
u2ε2k2ε1

1 − 1
)
ε1
)
u−ε1−2ε2+1

+ 2Γ (1− ε1) Γ (−ε2) Γ (ε1 + ε2) 2F1 (1− ε1, 1− ε2;−ε1 − ε2 + 1;u)

×
(
u3ε2+1k3ε1

1 + 1
)
k3ε2

2 ε2u
ε1−2ε2−1 − Γ (−ε1) Γ (−ε2 − 1) Γ (ε1 + ε2 + 2)

× 2F1 (−ε1,−ε2;−ε1 − ε2 − 1;u) kε11

(
u2ε2k2ε1

1 − 1
)
k2ε2

2 ε1u
−ε2−1

+ 2Γ (3− ε1) Γ (−ε2 − 1) Γ (ε1 + ε2 − 1) 2F1 (3− ε1, 1− ε2;−ε1 − ε2 + 2;u) kε11

×
(
u2ε1k2ε2

2 − 1
)
ε2u
−2ε1−ε2 − Γ (−ε1) Γ (−ε2) Γ (ε1 + ε2)

× kε11 k
ε2
2

(
2F1 (1− ε1, 2− ε2;−ε1 − ε2 + 1;u) ε1

+ 2F1 (−ε1, 2− ε2;−ε1 − ε2 + 1;u) ε2
)(

2uε2ε2k
ε1
1 +

(
u2ε2k2ε1

1 − 1
)
ε1
)
u−ε1−ε2−1

+ 2Γ (2− ε1) Γ (−ε2) Γ (ε1 + ε2 − 1)

× 2F1 (2− ε1, 1− ε2;−ε1 − ε2 + 2;u) kε11 k
3ε2
2 ε2u

ε1−ε2

+ Γ (2− ε1) Γ (−ε2 − 1) Γ (ε1 + ε2) 2F1 (2− ε1, 1− ε2;−ε1 − ε2 + 1;u)

×
(
uε2+1

(
u2ε1k2ε2

2

(
ε1 + 2ε2 − 1

)
− 2ε2

)
kε11

+ u2(ε1+ε2)k2ε2
2 (ε2 − u (ε1 + ε2 + 1)) k2ε1

1

+ u3ε2
(
u2ε1+1k2ε2

2 (−ε1 + 2ε2 + 1)− 2ε2
)
k3ε1

1

− 2uε2 + u2ε1k2ε2
2 (ε2 + u (ε1 + ε2))

)
u−2(ε1+ε2)−1

+ Γ (1− ε1) Γ (−ε2 − 1) Γ (ε1 + ε2)
(

2F1 (2− ε1, 1− ε2;−ε1 − ε2 + 1;u) (ε1 − 1)

+ 2F1 (1− ε1, 1− ε2;−ε1 − ε2 + 1;u) (ε2 + 1)
)

×
(
u2ε1+ε2k2ε2

2 (ε1 + (u− 1)ε2 − 1) kε11 − u
2ε2
(
k2ε2

2 (ε1 − 2ε2 + 1)u2ε1 + 2ε2
)
k2ε1

1

+ u3ε2
(
u2ε1k2ε2

2 (−ε1 + uε2 + ε2 + 1)− 2ε2
)
k3ε1

1 − 2uε2

+ u2ε1k2ε2
2 (ε1 + 2ε2)

)
u−2(ε1+ε2)−1

}
θφ+O(kµ) + (εµ ↔ −εµ) . (3.59)
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Chapter 4

The Quantum Field Theory limit

of String Diagrams

It has been known since the early days of string theory that in the zero-slope limit α′ → 0,

string theory can be described by an effective field theory in the target spacetime of Yang-

Mills gauge theory coupled to general relativity [2, 3]. In fact the correspondence can

be made even more precise: in the Schottky group the α′ → 0 limit of a string theory

amplitude is expressed as a sum of finitely many integrals, seemingly associated to the

different types of states that can propagate through degenerating homology cycles (i.e. to

the different sectors of the worldsheet CFT). In this section we perform the necessary

calculations to show that these integrals are associated to the various Feynman diagrams

on the QFT side of the correspondence.

4.1 The string theory setup

We consider a stack of N parallel D(d−1)-branes, spatially separated from each other in

the directions perpendicular to their worldvolumes (Dirichlet-branes or ‘D-branes’ were

mentioned first in [95]; it is shown that they are innate to type II theories in [96]). This

breaks the symmetry of the worldvolume theory from U(N) to U(1)N [97]; the theory is in

the ‘Coulomb phase’. Furthermore, each of the D-branes has a constant U(1) background

field in the x1–x2 plane, whose field strength is equal to

F iµν = Bi
(
ηµ1η2ν − ηµ2ην1

)
. (4.1)

When the D-branes are displaced from each other in the transverse directions (which

amounts in the worldvolume theory to giving the massless scalar fields a vacuum expec-

tation value (VEV) [97]) then the factor of the integration measure corresponding to the

scalar sector of the spacetime theory must be modified by multiplication with a factor

giving the contribution from the tension of strings stretched between two non-coincident

D-branes. We are considering a system of N parallel D(d−1)-branes whose coordinates

in the transverse directions are given by (Y i
I ) = (Y i

1 , . . . , Y
i
Ns

) (see Fig. 4.2). A string
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Figure 4.1: A stack of N parallel, separated D(d−1)-branes with background fields.
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Figure 4.2: The positions of the N D(d−1) branes in the xI–xJ plane.
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stretched between the ith and jth branes will have squared length

Y 2
ji =

NS∑
I=1

(Y i
I − Y

j
I )2 , (4.2)

and will receive a classical contribution to its mass from the elastic potential energy asso-

ciated with the stretching of the string,

m2
ij = (TYij)

2 =
Y 2
ij

(2πα′)2
, (4.3)

where T is the fundamental string tension and α′ is the related Regge-slope. Open strings

that start and end on the same D-brane are uncharged and their mass is independent of

Y i
I .

The constant background magnetic fields on the D-brane worldvolumes manifest them-

selves in the worldsheet picture by altering the boundary conditions of the worldsheet

CFTs. On the double cover of the surface, this gives twisted periodicities, i.e. non-trivial

monodromies, to the zero modes in the two magnetized space directions, as described for

bosonic strings in e.g. [84, 85, 86] and [87] and superstrings in [88, 89]; we follow the

approach in section 2 of [92] and section 2 of [94]. This can be seen most readily in the

path integral formalism.

4.2 The superstring partition function for the NS sector

The superstring vacuum amplitude for the NS sector of an h-loop open superstring with

Neumann boundary conditions can be found in Ref. [9] in terms of super Schottky param-

eters, and may be written as

[dm]0h =

[
1

dVv1u1v2

h∏
i=1

dki

k
3/2
i

dui dvi
vi

.− ui

]
Fgh(m) F

(0)
gl (m) . (4.4)

In this expression, ki, ui ≡ ui|θi and vi ≡ vi|φi are respectively the multiplier and the

attractive and repulsive fixed super-points of the super Schottky group generator Si. The

argument m in Eq. (4.4) denotes all of the moduli ki, ui, vi|θi, φi, i = 1, . . . , h.

In fact, there is an ambiguity in Eq. (4.4), because the half-integer power of ki could

indicate either of two branches of the function. The notation is to be understood in the

following way: that ki
1
2 indicates the smallest (in absolute value) of the eigenvalues of

Si, and can therefore be either positive or negative. In fact, we will see later that the

implementation of the GSO projection is equivalent to summing over all four possible

pairs of choices of sign for ki
1
2 .

The notation vi
.− ui means the supersymmetric difference,

vi
.− ui ≡ vi − ui + θiφi . (4.5)
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The factor
1

dVv1u1v2

=

√
(v1

.− u1)(u1
.− v2)(v2

.− v1)

dv1du1dv2
dΘv1u1v2 (4.6)

takes into account the super-projective invariance of the integrand, which allows us to fix

three bosonic and two fermionic variables. Θv1u1v2 is the fermionic super-projective invari-

ant of the three fixed points, which first appeared in ref. [39] and is given in Eq. (2.218).

As a consequence, if we specialize to h = 2 loops then the factor in square brackets in

Eq. (4.4) which we will call dµ can also be written as

dµ ≡ 1

dVv1u1v2

2∏
i=1

dki

k
3/2
i

dui dvi
vi

.− ui
=

dk1

k
3/2
1

dk2

k
3/2
2

du2 dΘv1u1v2

v2
.− u2

√
(u1

.− v2)(v2
.− v1)

v1
.− u1

. (4.7)

As discussed in Ref. [98], it is important to specify the bosonic variables that are kept

fixed when performing the Berezin integration over Grassmann variables. In the super

Schottky parametrization, the objects entering in the NS vacuum energy, Eq. (4.4), can

be expressed as [9]

Fgh(m) =
(1− k1)2 (1− k2)2

(1− k1
1
2 )2(1− k2

1
2 )2

∏
α

′ ∞∏
n=2

(
1− knα

1− kn−
1
2

α

)2

, (4.8)

F
(0)
gl (m) =

[
det (Im τ )

]−D
2
∏
α

′ ∞∏
n=1

1− kn−
1
2

α

1− knα

D , (4.9)

τ is the super-period matrix, discussed in section 2.3.3. The notation
∏′
α is defined after

Eq. (2.248).

A multiplier kα depends only on the supertrace of the OSp(1|2) matrix corresponding to

Sα (see Eq. (2.230) and section 2.3.2). Since a supertrace satisfies the same cyclic property

as a trace, and a super-projective matrix and its inverse have the same multiplier, kα is the

same for every element in a primary class and so Eq. (4.8) and Eq. (4.9) are well-defined.

Note that as in Eq. (4.4), the multipliers kα appear in this expression with half-integer

powers. These are to be understood similarly, i.e. kα denotes the smaller (in absolute

value) of the two eigenvalues of Tα. kα may be positive or negative. Each of the kα’s

can be expressed as an algebraic function of the (super) moduli (including the ki
1
2 ’s for

i = 1, 2), and when we vary the signs of the ki
1
2 ’s to carry out the GSO projection, the

signs of the kα
1
2 ’s will also vary due to their dependence on ki

1
2 .

Since we want to compute vacuum amplitudes for open strings on parallel D(d−1)

branes, we need to alter Eq. (4.9) to reflect the Dirichlet boundary conditions in Ns ≡
D − d directions. This doesn’t affect the orbital modes which enter Eq. (4.9) via the

infinite product, but the factor of [det(Im τ )]−D/2 which arises from the integral over loop

momenta should be modified by replacing D → d. Anticipating that the factor from the

Ns transverse directions will be the origin of scalar fields in the D-brane world-volume

theory, we write

F
(0)
gl (m)→ F

(0)
gl (m) F

(0)
scal(m) , (4.10)
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F
(0)
gl (m) =

[
det (Im τ )

]− d
2
∏
α

′ ∞∏
n=1

1− kn−
1
2

α

1− knα

d , (4.11)

F
(0)
scal(m) =

∏
α

′ ∞∏
n=1

1− kn−
1
2

α

1− knα

Ns

. (4.12)

In the presence of a constant background gauge field, the factor F
(0)
gl in Eq. (4.11)

gets modified, since string coordinates with Neumann boundary conditions propagate in

space-time and are sensitive to such backgrounds. The relevant modification to the bosonic

theory was derived in [16]. Using the same techniques, developed and described in [51,

16, 94], it is possible to generalize this construction to the Neveu-Schwarz spin structure

of the RNS superstring. Switching on the background field amounts to multiplying F
(0)
gl

by a factor which depends on the twists ~ε = (ε1, ε2) which are related to the strengths of

the background fields on the three boundaries via Eq. (3.31). In terms of this, we have

F
(0)
gl (m)→ F

(~ε)
gl (m) = R(m,~ε) F

(0)
gl (m) , (4.13)

where, assuming that the constant background field strength is non-zero in only one plane,

we have

R(m,~ε) = e−iπ~ε·τ ·~ε det (Im τ )

det (Im τ~ε)

∏
α

′ ∞∏
n=1

{(
1− kn−

1
2

α

1− knα

)−2

, (4.14)

×
(
1− e 2iπ~ε·τ · ~Nα k

n− 1
2

α

)(
1− e−2iπ~ε·τ · ~Nα k

n− 1
2

α

)(
1− e 2πi~ε·τ · ~Nα knα

)(
1− e−2πi~ε·τ · ~Nα knα

) }
.

The h-component vector ~Nα has integer-valued entries: the i-th entry counts how

many times the generator Si enters in the element of the super Schottky group Tα; we

define N i
α = 0 for Tα = Id and N i

α = N i
β ± 1 for Tα = S±1

i Tβ.

Inserting Eq. (4.14) in Eq. (4.13), we see that F
(~ε)
gl can be factorized as the product of

two terms

F
(~ε)
gl (m) = F⊥(m) F

(~ε)
‖ (m) (4.15)

where F
(~ε)
⊥ is equal to F

(0)
gl with the replacement d → (d − 2), and all dependence on the

background field is contained in F
(~ε)
‖ which reduces to F

(0)
gl with the replacement d→ 2 in

the limit ~ε→ 0. The notation is motivated in anticipation that in the QFT limit, F
(~ε)
‖ will

be the origin of gluons polarized in the plane of the background magnetic field, while F⊥

will be the origin of gluons polarized in the transverse directions. To be precise, we have

F⊥(m) =
[

det (Im τ )
]− d−2

2
∏
α

′ ∞∏
n=1

1− kn−
1
2

α

1− knα

d−2

, (4.16)

F
(~ε)
‖ (m) =

e−iπ~ε·τ ·~ε

det (Im τε)
(4.17)
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×
∏
α

′ ∞∏
n=1

(
1− e 2iπ~ε·τ · ~Nα k

n− 1
2

α

)(
1− e−2iπ~ε·τ

)
· ~Nα k

n− 1
2

α

)(
1− e 2πi~ε·τ · ~Nα knα

)(
1− e−2πi~ε·τ · ~Nα knα

) .

When the D-branes are separated from each other in the transverse directions as in Fig. 4.2,

F
(0)
scal has to be multiplied by a factor accounting for the string tensions. The factor can be

found by following the equivalent calculation for the bosonic theory in ref. [99] with the

only essential difference that the period matrix τ is to be replaced with the super-period

matrix τ . We find

F
(0)
scal → F

(~mI)
scal = Y(m, ~mI) F

(0)
scal ; (4.18)

Y(m, ~mI) ≡
Ns∏
I=1

e2πiα′ ~mI ·τ ·~mI . (4.19)

Here ~mI is a vector whose h = 2 components have dimensions of mass (but note that

they can be negative) and encode the stretching in the xI direction of strings propagating

around the two open string handles. If we say the homology cycle a1 separates boundaries

on the ith and kth branes and the homology cycle a2 separates boundaries on the kth and

jth branes, then it is given by ~mI = (mij
I ,m

jk
I ), where

mab
I ≡

Y a
I − Y b

I

2πα′
. (4.20)

As in Fig. 4.2, Y a
I is the xI co-ordinate of the D-brane labelled by a. Note that mab

I can

be positive or negative depending on the order of a and b. If we use mij
I = −mki

I −m
jk
I ,

then we see that the factor depends only on the squares of the three mab
I ’s, since

~mI · τ · ~mI = (mki
I )2 τ11 + (mjk

I )2 τ22 +
(
(mij

I )2 − (mjk
I )2 − (mki

I )2
)
τ12 . (4.21)

It follows from Eq. (4.3) that the squared masses m2
ij of the stretched states are simply the

sums of the squares of the mij
I ’s. Therefore the product over the Ns transverse directions

in Eq. (4.19) can be easily evaluated and we arrive at an expression for Y(m, ~mI) in terms

of the squared masses m2
ij :

Y(m, ~mI) = exp
[
2πiα′

(
m2
kiτ11 +m2

jkτ22 +
(
m2
ij −m2

jk −m2
ki

)
τ12

)]
. (4.22)

In our setup, then, the integration measure in Eq. (4.4) is modified to

[dm]0,~ε,~mI2 = dµFgh(m) F
(~ε)
‖ (m) F⊥(m) F~mI

scal(m) , (4.23)

where dµ is defined in Eq. (4.7), Fgh is defined in Eq. (4.8), F
(~ε)
‖ is defined in Eq. (4.17),

F⊥ is defined in Eq. (4.16) and F~mI
scal is defined in Eq. (4.18).

In fact, all of the factors in Eq. (4.23) are invariant under super-projective transfor-

mations of the fixed super-points. We can use this to fix 3|2 of them; a convenient gauge
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is

u1 = 0|0 v1 =∞|0 u2 = u|θ v2 = 1|φ , (4.24)

which leads to

Θv1u1v2 = φ , v2
.− u2 = 1− u+ θφ ,

√
(u1

.− v2)(v2
.− v1)

v1
.− u1

= 1 . (4.25)

Inserting these in Eq. (4.7), we can write the measure finally as

[dm]0,~ε,~mI2 =
dk1

k
3/2
1

dk2

k
3/2
2

du

y
dθ dφFgh(m) F

(~ε)
‖ (m) F⊥(m) F~mI

scal(m) , (4.26)

where we’ve written

y ≡ Ψ̂u1v1u2v2 = 1− u+ θφ , (4.27)

which is the sewing parameter for the separating degeneration; the super-projective in-

variant cross ratio Ψ̂z1z2z3z4 is defined in Eq. (2.219).

4.3 The field theory limit

4.3.1 Expanding in ki
1
2

We are interested in computing the α′ → 0 limit of the superstring amplitude. The measure

includes a product over infinitely many primary classes in the super-Schottky group, with

infinitely many powers of each; similarly the expression for super-period matrix includes

a sum over infinitely many Schottky group elements. But all of the terms in the measure

Eq. (4.26) can be expressed in terms of the 3|2 moduli of the SRS, and we can write them

as series expansions in the multipliers ki
1
2 .

A term in the ki
1
2 power series expansion of the measure has a natural interpretation as

the term associated to string states of a particular excitation level propagating around the

loops; a term proportional to dki k
n/2
i corresponds to the (n+3)th excited level. Therefore

all terms with n ≥ −1 get squared masses m2 = n+2
2α′ and become infinitely heavy in the

limit α′ → 0. Since dµ in Eq. (4.7) includes factors of the form dki/k
3/2
i , it is necessary

to compute Fgh(m), F
(~ε)
‖ (m), F⊥(m) and F~mI

scal(m) only up to terms of order ki
1
2 to get

the full QFT amplitude.

This is aided by the fact that the multipliers of all but finitely many super-Schottky

group elements vanish at order k1
1
2k2

1
2 , so the infinite products and series reduce to finite

sums. This is because the leading-order behaviour of the multiplier kα = k(Sα) is related

in a simple way to how many times the generators Si and their inverses appear in the

reduced word corresponding to Sα: we have

k
(
S±1
i Sα

) 1
2 ∈ O

(
(kikα)

1
2
)

(4.28)
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if the left-most factor of Sα is not S∓1
i . Thus, the square roots of multipliers of every

super-Schottky group element not in the primary class of one of S1, S2, S1S2, S−1
1 S2

vanish at order k1
1
2k2

1
2 .

We can compute expressions for all of the factors Fgh(m), F
(~ε)
‖ (m), F⊥(m) and

F~mI
scal(m) at order k1

1
2k2

1
2 . We will begin with Fgh defined in Eq. (4.8). Most terms

can be neglected: every term in the infinite product differs from unity only by terms of

order at least k
3/2
i , and the numerator of the fraction by terms of order ki. It becomes

simply

Fgh(m) = (1 + 2k1
1
2 )(1 + 2k2

1
2 ) +O(kµ) . (4.29)

Next we find F⊥, defined in Eq. (4.16). It is given by

F⊥ =
[

det (Im τ )
]− d−2

2
(
1− (d− 2)k1

1
2
)(

1− (d− 2)k2
1
2
)

(4.30)

×
(

1− (d− 2)k
(
S−1

1 S2

) 1
2

)(
1− (d− 2)k

(
S1S2

) 1
2

)
+O(kµ) ,

or if we expand the kα
1
2 ’s as in Eq. (2.231) and Eq. (2.233), we find

F⊥ =
[

det (Im τ )
]− d−2

2

{
(1− (d− 2)k1

1
2 )(1− (d− 2)k2

1
2 ) (4.31)

+ (d− 2)k1
1
2k2

1
2
y

u
− (d− 2)k1

1
2k2

1
2 y
}

+O(kµ) .

The ki
1
2 -expansion of det(Im τ ) is given in Eq. (2.243), which leads to

[
det (Im τ )

]− d−2
2 =

(4π2)
d−2
2(

log k1 log k2 − (log u)2
) d−2

2

(4.32)

×
(

1− (d− 2)
y

u

k1
1
2 log k1 + k2

1
2 log k2

log k1 log k2 − (log u)2
θφ
)

+O(kµ) .

Next we should calculate F
(~ε)
‖ from Eq. (4.17). The first factor can be found using τ

from Eq. (2.242) and is given by

e−iπ~ε·τ ·~ε = k
− ε

2
1
2

1 k
− ε

2
2
2

2 u−ε1ε2
(

1− y

u

(
k2

1
2 ε21 + k

1
2
1 ε

2
2

)
θφ
)

+O(kµ) . (4.33)

det(Im τ~ε)
−1 can be found by inverting the right hand side of Eq. (3.59). The remaining

factor is given by

∏
α

′ ∞∏
n=1

(
1− e 2iπ~ε·τ · ~Nα k

n− 1
2

α

)(
1− e−2iπ~ε·τ · ~Nα k

n− 1
2

α

)(
1− e 2πi~ε·τ · ~Nα knα

)(
1− e−2πi~ε·τ · ~Nα knα

) (4.34)

=
(

1− k1
1
2
(
kε11 u

ε2 + k−ε11 u−ε2

− 2ε1θφ
y

u
k

1
2
2 (kε11 u

ε2 − k−ε11 u−ε2)
))

×
(

1− k2
1
2 (kε22 u

ε1 + k−ε22 u−ε1
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− 2ε2θφ
y

u
k

1
2
1 (kε22 u

ε1 − k−ε22 u−ε1))
)

− k1
1
2k2

1
2 (kε11 k

ε2
2 u

ε1+ε2 + k−ε11 k−ε22 u−ε1−ε2
)
y

+ k1
1
2k2

1
2
(
kε11 k

−ε2
2 uε1−ε2 + k−ε11 kε22 u

ε2−ε1)y
u

+O(kµ) .

Lastly, we need to find an expression for F
(~mI)
scal , defined in Eq. (4.18). We can use Eq. (4.22)

to expand Y in the ki
1
2 using the expression for τ in Eq. (2.242), we get

Y(m, ~mI) = k
α′m2

1
1 k

α′m2
2

2 uα
′(m2

3−m2
1−m2

2) (4.35)

×
(

1 + 2α′
y

u
k1

1
2 m2

2 + k2
1
2 m2

1

))
+O(kµ) ,

where we’ve renamed (m2
ki,m

2
jk,m

2
ij) → (m2

1,m
2
2,m

2
3). The remaining factor in F

(~mI)
scal is

given by

F
(0)
scal(m) = (1−Ns k1

1
2 )(1−Ns k2

1
2 ) +Ns k1

1
2k2

1
2
y

u
−Ns k1

1
2k2

1
2 y +O(kµ) . (4.36)

We now have all of the factors of Eq. (4.26); they can be combined to give an expression

for the full integration measure,

[dm]02 =
dk1

k
3/2
1

dk2

k
3/2
2

du

y
dθ dφ

[
det (Im τ )

]− d−2
2

det (Im τ~ε)

k
α′m2

1
1 k

α′m2
2

2 uα
′(m2

3−m2
1−m2

2)k
− ε

2
1
2

1 k
− ε

2
2
2

2 u−ε1ε2 (4.37)

×
{(

1− k1
1
2
(
d− 2 + kε11 u

ε2 + k−ε11 u−ε2 +Ns − 2
))

×
(

1− k2
1
2
(
d− 2 + kε22 u

ε1 + k−ε22 u−ε1 +Ns − 2
))

×
(

1− y

u

(
k1

1
2 (ε22 − 2α′m2

2) + k2
1
2 (ε21 − 2α′m2

1)
)
θφ
)

− k1
1
2k2

1
2 y
(
d− 2 + k1

ε1k2
ε2uε1+ε2 + k−ε11 k−ε22 u−ε1−ε2 +Ns

)
+ k1

1
2k2

1
2
y

u

(
d− 2 +Ns − 2

+ 2
(
ε1(kε11 u

ε2 − k−ε11 u−ε2) + ε2(kε22 u
ε1 − k−ε22 u−ε1)

)
+ kε11 k

−ε2
2 uε1−ε2 + k−ε11 k−ε22 uε2−ε1

)}
+O(kµ) .

4.4 A symmetric parametrization

The integration measure in Eq. (4.37) is not, however, written in the most symmetric way

possible, since two of the bosonic moduli k1
1
2 and k2

1
2 are multipliers of super-Schottky

group generators, while the other modulus u ≡ 1−y+θφ is a cross-ratio of the fixed points.

This makes it hard to find the field theory limit. To present the integration measure in

a sufficiently symmetric way, we should try to write it so it is has the same form under

permutations of the super-Schottky group elements S1, S2 and S−1
1 S2. The reason for

this is that the homology cycles a1, a2 and (a−1
1 · a2) lift to these super-Schottky group

elements on CP1|1 − Λ, but any two of a1, a2 and (a−1
1 · a2) (along with the appropriate
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a1 a2

(a−1
1 · a2)

(a)

(a1 · a2)

(b)

Figure 4.3: Two types of homology cycles on the double annulus.

choice of b-cycles) constitute a good canonical homology basis (see Fig. 4.3a). Any other

homology cycle built out of a cycles will intersect itself (e.g. (a1 · a2), see Fig. 4.3b). Our

choice of S1 and S2 as the generators is arbitrary, so in order to be modular invariant, the

measure should be symmetric under permuting among S1, S2 and S−1
1 S2.

A natural way to symmetrize the measure is therefore to use the multiplier of S−1
1 S2 as

the third bosonic modulus, instead of u. If we use k3
1
2 to denote the smallest (in absolute

value) eigenvalue of S1S
−1
2 (so k3 is its multiplier), then it can be found implicitly from

the relation

y =
(1− k1)(1− k2) + θ φ

[
(1− k1

1
2 )(1− k2

1
2 )(1 + k1

1
2k2

1
2 )
]

1 + k1k2 − k1
1
2k2

1
2 (k3

1
2 + k3

− 1
2 )

. (4.38)

Although these moduli are symmetric, they are not the most appropriate for investi-

gating the symmetric degeneration, because the worldsheet pinches at two points on each

of the cycles a1, a2 (a−1
1 · a2). Instead, we should define the moduli pi—or rather, their

square roots,
√
pi—with

k1
1
2 = −eiπς1√p1

√
p3 k2

1
2 = −eiπς2√p2

√
p3 k3

1
2 = −eiπς3√p1

√
p2 . (4.39)

The
√
pi’s are defined always to be positive, and the fact that the kα

1
2 ’s may be either

positive or negative is allowed for by the inclusion of ςi ∈ Z2, the spin structures associated

to the two bi-cycles. ς3 is the spin structure around the b3 homology cycle and it is given

simply by σ3 = σ1 + σ2 (mod 2).

In this way, each of the pi behaves as a sewing parameter for one of the three NS

degenerations.

To see that the − signs in Eq. (4.39) are necessary, we note that whether k1
1
2 and k2

1
2

are both positive or are both negative, k3
1
2 is negative, which is why there must be a −

sign in the third expression. Then by symmetry, there should be a − sign in all three

expressions.

The measure expressed in terms of the pi is symmetric overall, but it’s not symmetric

within each sector (Fgh, Fgl, Fscal) under swapping p3 ↔ p1 or p3 ↔ p2, which it must be

in order to obtain matching with QFT at the level of Feynman graphs. For example, with
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the moduli (pi|θ, φ), the factor within the square brackets of Eq. (4.4) is given as

dk1

k
3/2
1

dk2

k
3/2
2

d log y dθ dφ =
dp1

p
3/2
1

dp2

p
3/2
2

dp3

p3
dθ dφ

1− p1p2

(1 + p3)(1 + p1p2p3)
. (4.40)

The reason for this is that we are allowed to rescale the odd moduli by arbitrary functions,

because the Berezinian of the transformation will cancel the rescaling and preserve the

Berezin integral:

dθ̃ dφ̃ θ̃φ̃ =
dθ

fθ(pi|θ, φ)

dφ

fφ(pi|θ, φ)
θfθ(pi|θ, φ)φfφ(pi|θ, φ) = dθ dφ θφ . (4.41)

Even if there are natural odd moduli which make the symmetry manifest, a different

choice of moduli which is related to the natural choice by an asymmetric rescaling will

typically shuffle contributions between the various factors of the integrand, despite not

changing the Berezin integral. Our odd moduli θ, φ must not be the natural choice, which

is unsurprising because they are super-projective invariants of the fixed points of S1 and

S2 only.

It is therefore necessary to find a pair of odd moduli which is invariant under permuting

among S1, S2, S−1
1 S2. To do this, we can define

θ̂ij = cij Θviuiuj , φ̂ij = cij Θviuivj , (4.42)

for (ij) = (12), (23), (31), where

c12 =
[(

1 + eiπς3√p1
√
p2

) (
1− eiπς1√p1

√
p3

) (
1− eiπς2√p2

√
p3

)]−1/2
, (4.43)

with c23 and c31 obtained by permuting the indices (123). We’ve written ς3 = ς1 + ς2,

u3 and v3 label respectively the spin structure and the fixed points of the transformation

S−1
1 S2. In terms of these new Grassmann variables, Eq. (4.41), multiplied with the massless

contribution of the ghost sectors in Eq. (4.8), reads

3∏
i=1

[
dpi

p
3/2
i

1 + ki
1
2

√
1 + pi

]
dθ̂12 dφ̂12

1√
1 + p1p2p3

. (4.44)

One can check that

dθ̂12 dφ̂12 = dθ̂23 dφ̂23 = dθ̂31 dφ̂31 , (4.45)

so that Eq. (4.44) is fully symmetric under permutations of the super-Schottky transfor-

mations S1, S2, S−1
1 S2 as expected. The various factors of the integrand can be expressed

in terms of the variables (pi|θ̂12, φ̂12); to write them in this form, θφ can be expressed as

follows:

θφ =

√
p3(1 + p1)(1 + p2)

(1 + p3)(1 + p1p2p3)
(1 + eiπς3√p1p2)(1− eiπς1√p1p3)(1− eiπς2√p2p3) θ̂12φ̂12

(4.46)
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=
√
p3(1 + eiπς3√p1p2) θ̂12φ̂12 +O(pi) (4.47)

Up to O(pi), the only contribution to Fgh in Eq. (4.29) came from the zero modes; these

have been included in Eq. (4.44), which becomes

dµFgh(m) =
3∏
i=1

[
dpi

p
3/2
i

1 + ki
1
2

√
1 + pi

]
dθ̂12 dφ̂12

1√
1 + p1p2p3

(4.48)

=
3∏
i=1

[
dpi

p
3/2
i

]
dθ̂12 dφ̂12 (1− eiπς1√p1p3 − eiπς2√p2p3 − eiπς3√p1p2) +O(pi) .

We can make expressions more symmetric if we implicitly include the spin structure in

the square roots, to be reinstated later when we carry out the GSO projection, by writing

√̃
p1 ≡ eiπς1√p1

√̃
p2 ≡ eiπς2√p2

√̃
p3 ≡

√
p3

√̃
xy ≡

√̃
x
√̃
y (4.49)

so the right-hand side of Eq. (4.48) becomes

3∏
i=1

[
dpi

p
3/2
i

]
dθ̂12 dφ̂12

(
1− √̃p1p3 −

√̃
p2p3 −

√̃
p1p2

)
+O(pi) . (4.50)

The twisted gluon sector comes from Eq. (4.32). To write it down in terms of the pi, we

need to make use of the substitution

u = p3

(
1 + θ̂12φ̂12(

√̃
p3 −

√̃
p1 −

√̃
p2 +

√̃
p1p2p3)

)
+O(p1, p2) +O(p2

3), (4.51)

which can be found by inserting Eq. (4.38) in u ≡ 1 − y + θφ with the substitutions in

Eq. (4.39) and using Eq. (4.42) to rewrite θ and φ in terms of θ̂12 and φ̂12. We find that

the contribution from the orbital modes, coming from Eq. (4.34), is given by

1 +
{√̃

p1p2

[
(pε11 p

−ε2
2 − p−ε11 pε22 )− θ̂12φ̂12

√̃
p3(ε1 − ε2)(pε11 p

−ε2
2 − p−ε21 pε22 )

]
+ cyclic permutations of (pi, εi)

}
+O(pi) . (4.52)

where ε3 ≡ −ε1 − ε2. The exponential factor, given in Eq. (4.33), becomes

e−iπ~ε·τ ·~ε = p
− ε

2
1
2

1 p
− ε

2
2
2

2 p
− ε

2
3
2

3

(
1− 1

2
θ̂12φ̂12

(√̃
p1(ε21 − ε22 − ε23) +

√̃
p1p2p3 ε

2
1

+ cyclic permutations of (pi, εi)
))

+O(pi) . (4.53)

The twisted determinant det (Im τ~ε), given in Eq. (3.59) can be expressed in these moduli

by making the substitution Eq. (4.51) in the hypergeometric functions, which yields

2F1(a− ε1, b− ε2, c− ε1 − ε2, u) = 1 +
(a− ε1)(b− ε2)

c− ε1 − ε2
u+O(u2) (4.54)

= 1 +O(pi) , (4.55)
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and we find that det (Im τ~ε) is equal to

det (Im τ~ε) =
1

4π2
Γ(−ε1)Γ(−ε2)Γ(−ε3)

(
p
ε1
2

1 p
ε2
2

2 p
ε3
2

3

(
ε1p
− ε1

2
1 + ε2p

− ε2
2

2 + ε3p
− ε3

2
3

)
+ θ̂12φ̂12

{√̃
p1

(
p
ε1
2

1 p
− ε2

2
2 p

− ε3
2

3 + p
− ε1

2
1 p

ε2
2

2 p
ε3
2

3

)
p
ε1
2

1 ε2ε3

+ cyclic permutations of (pi, εi)
}

+ θ̂12φ̂12
√̃
p1p2p3 p

−3
ε1
2

1 p
−3

ε2
2

2 p
−3

ε3
2

3

{
2p2ε2

2 p2ε3
3 ε1(pε22 ε2 + pε33 ε3)

+ pε11

(
(ε2p

ε2
2 + ε3p

ε3
3 )
(

(ε2 + ε3) pε33 p
ε2
2 + 2ε3p

2ε2
2 + 2ε2p

2ε3
3

)
pε11 −(

ε2ε3p
ε3
3 p

ε2
2 + 2ε3 (ε2 + ε3) p2ε2

2 + 2ε2 (ε2 + ε3) p2ε3
3

)
p2ε1

1 −

pε22 p
ε3
3

((
2ε22 + 3ε3ε2 + 2ε23

)
(−pε33 ) pε22 + ε1ε3p

2ε2
2 + ε1ε2p

2ε3
3

))})
+ (εi ↔ −εµ) +O(pi) . (4.56)

Next we want to find the ingredients for the untwisted gluon sector, which comes from

Eq. (4.31), yielding

F⊥ =
[

det(Im τ )
]− d−2

2

(
1− (d− 2)

(√̃
p1p3 +

√̃
p2p3 +

√̃
p1p2

))
+O(pi) , (4.57)

where the determinant of the period matrix, coming from Eq. (2.243), becomes

4π2 det(Im τ ) = log p1 log p2 + log p2 log p3 + log p3 log p1 (4.58)

− 2 θ̂12φ̂12

{
(
√̃
p1 −

√̃
p1p2p3) log p1

+ cyclic permutations of (pi, εi)
}

+O(pi) .

Finally, we need the ingredients for the scalar sector. The factor containing the contribu-

tion from the VEVs comes from Eq. (4.35) and is given by

Ns∏
I=1

e2πiα′ ~mI ·τ ·~mI = p
α′m2

1
1 p

α′m2
2

2 p
α′m2

3
3

(
1 + α′ θ̂12φ̂12

{√̃
p1(m2

1 −m2
2 −m2

3) +
√̃
p1p2p3m

2
1

+ cyclic permutations of (pi,m
2
i )
})

+O(pi) . (4.59)

The other factor in Eq. (4.36) is given as

∏
α

′ ∞∏
n=1

(1− eiπ~̃ς· ~Nα k
n− 1

2
α

1− knα

)Ns

= 1 +Ns

(√̃
p1p3 +

√̃
p2p3 +

√̃
p1p1

)
+O(pi) . (4.60)

Combining Eq. (4.59) and Eq. (4.60), we get the total contribution from the scalar sector

Fscal = p
α′m2

1
1 p

α′m2
2

2 p
α′m2

3
3

(
1 +Ns

(√̃
p1p3 +

√̃
p2p3 +

√̃
p1p1

)
+ α′θ̂12φ̂12

((√̃
p1(m2

1 −m2
2 −m2

3) + cyclic permutations of (pi,m
2
i )
)
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− (Ns − 1)(m2
1 +m2

2 +m2
3)
√̃
p1p2p3

))
+O(pi) . (4.61)

Now we have expressed all of the factors of the integrand in terms of the symmetric pi, θ̂12,

φ̂12 moduli, so we can procede to compute the α′ → 0 QFT limit of the amplitude, where

we will find a 1–1 match between terms in the string integrand and Feynman diagrams.

4.4.1 Rewriting with field theory variables

To express the field theory limit of the amplitude in a form we can compare to our Feynman

diagram calculations, we replace integration over the moduli pi with integration over the

dimensionful Schwinger parameters ti via

pi = e−
ti
α′ , (4.62)

and re-express the twist εµ in terms of the background field strengths Bi via

εi = 2α′gBi +O(α′
3
) , i = 1, 2, 3 . (4.63)

The factor corresponding to the gluon modes parallel to the magnetic field can be found

by multiplying Eq. (4.52) with Eq. (4.53) and dividing by Eq. (4.56), which yields

F
(~ε)
‖ (m) =

(2πα′)2

∆F

(
1 +

{
2
√̃
p1p2 cosh(2gB1t1 − 2gB2t2)

− α′ θ̂12φ̂12
2

∆F
(
√̃
p1 +

√̃
p1p2p3)

sinh(gB1t1)

gB1
cosh(2gB1t1 − gB2t2 − gB3t3)

+ cyclic permutations of (pi, ti, Bi)
})

+O(α′
4
) +O(pi) ,

(4.64)

where

∆F =
cosh(gB1t1 − gB2t2 − gB3t3)

2g2B2B3
+ cyclic permutations of (ti, Bi) , (4.65)

while the contribution from the gluon modes perpendicular to the magnetic fields F⊥

becomes

F⊥ =
(2πα′)

d
2
−1

∆
d/2−1
0

(
1 + (d− 2)

{
√̃
p1p3 +

√̃
p2p3 +

√̃
p1p2

− α′θ̂12φ̂12
1

∆0

(√̃
p1 t1 +

√̃
p2 t2 +

√̃
p3 t3

+ (d− 3)
√̃
p1p2p3 (t1 + t2 + t3)

)})
+O(α′

d
2 ) +O(pi) , (4.66)

where

∆0 = t1t2 + t2t3 + t3t1 = lim
Bi→0

∆F . (4.67)
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The contribution from the D-brane world volume scalars comes from Eq. (4.61) and is

equal to

F
(~mI)
scal = e−t1m

2
1e−t2m

2
2e−t3m

2
3

(
1 +Ns

(√̃
p1p3 +

√̃
p2p3 +

√̃
p1p1

)
+ α′θ̂12φ̂12

(√̃
p1(m2

1 −m2
2 −m2

3)− (Ns − 1)m2
1

√̃
p1p2p3

+ cyclic permutations of (pi,m
2
i )
))

+O(pi) . (4.68)

The final factor, including the integration measure and the contribution from the ghosts,

is unchanged from Eq. (4.50).

The full integrand is the product of F‖ from Eq. (4.64), F⊥ from Eq. (4.66), Fscal from

Eq. (4.68) and dµFgh from Eq. (4.50). We want to order the integrand by powers of
√
pi

because negative powers will correspond to tachyons propagating in the ith leg, which

we want to eliminate via the GSO projection, and positive powers correspond to massive

states which we expect to decouple in the limit α′ → 0. Let us define the power series

coefficients F̂ijk
‖ via

F‖ =
(2πα′)2

∆F

∞∑
i,j,k=0

(√̃
p1

)i (√̃
p2

)j (√̃
p3

)k
F̂ijk
‖ (4.69)

and similarly

F⊥ =
(2πα′)d−2

∆
d−2
2

0

∞∑
i,j,k=0

(√̃
p1

)i (√̃
p2

)j (√̃
p3

)k
F̂ijk
⊥ (4.70)

Fscal =
3∏
i=1

[
e−tim

2
i

] ∞∑
i,j,k=0

(√̃
p1

)i (√̃
p2

)j (√̃
p3

)k
F̂ijk

scal (4.71)

dµFgh =

3∏
i=1

[
dpi

p
3/2
i

]
dθ̂12 dφ̂12

∞∑
i,j,k=0

(√̃
p1

)i (√̃
p2

)j (√̃
p3

)k
F̂ijk

gh . (4.72)

We have then

dµFgh F‖F⊥Fscal = (2πα′)d
3∏
i=1

[
dpi

p
3/2
i

e−tim
2
i

]
dθ̂12 dφ̂12 ∆

− d−2
2

0 ∆−1
F

×
∞∑

i,j,k=0

(√̃
p1

)i (√̃
p2

)j (√̃
p3

)k
F̂ijk (4.73)

where

F̂ijk =

∞∑
i`,j`,k`=0

F̂i1j1k1
gh F̂i2j2k2

‖ F̂i3j3k3
⊥ F̂i4j4k4

scal δ(i1+...+i4),i δ(j1+...+j4),j δ(k1+...+k4),k . (4.74)
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4.5 The GSO projection

Now, if we view the amplitude as a sum over states propagating through the 3 pinched

cycles, which map onto Feynman diagram edges, then the power of
√
pi corresponds to

the mass level of the state in the ith edge. To see this, we note that we have

dpi

p
3/2
i

(√
pi)

n = − 1

α′
dti e−

n−1
2α′ ti (4.75)

where dti e−
n−1
2α′ ti is a factor we would expect to see in a Schwinger-parameter propagator

for a field with squared mass m2 = n−1
2α′ . If n = 0 then the state propagating in the ith

edge will have negative squared mass, i.e. it will be a tachyon and we will remove it via

the GSO projection. If n ≥ 2 then the state will have squared mass m2 = n−1
2α′ > 0, which

will become infinitely large as α′ → 0 and therefore the state will decouple. For n = 1,

we find m2 = 0; once the tachyons are removed and we take the limit α′ → 0, we expect

these states to give the only non-vanishing contribution to the amplitude, and so the sole

non-vanishing contribution to the field theory limit of Eq. (4.73) comes from F̂111.

A cursory look at F‖ in Eq. (4.64), F⊥ in Eq. (4.66), Fscal in Eq. (4.68) and dµFgh

in Eq. (4.50), might suggest that tachyons can propagate simultaneously in an arbitrary

number of edges because we can find terms proportional to 1,
√̃
p1,
√̃
p1p2,

√̃
p1p2p3, . . .

and so on, which correspond to 3 tachyon edges, 2 tachyons, 1 tachyon and 0 tachyons,

respectively. A closer inspection shows, however, that the nilpotent object θ̂12φ̂12 multi-

plies a term if and only if there are an odd number of
√̃
pi’s (this property is preserved

when we multiply terms together). Since the Berezin integral over dθ̂12 dφ̂12 picks out the

coefficient of θ̂12φ̂12 , it follows that after carrying out the Berezin integral, each term must

contain an odd number of
√̃
pi’s.

After carrying out the Berezin integral but before carrying out the GSO projection,

the integrand truncated to O(
√
pi) will therefore be a sum of four terms whose coefficients

are

√̃
p1 = eiπς1√p1 ;

√̃
p2 = eiπς2√p2 ;

√̃
p3 =

√
p3 ;

√̃
p1p2p3 = eiπ(ς1+ς2)√p1p2p3 . (4.76)

There are four possible spin structures along the a-cycles:

(ς1, ς2) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} = Z2
2 . (4.77)

We need to sum the amplitude over the four spin structures ~ς with the appropriate signs

σ(~ς). The first three terms in Eq. (4.76) correspond to tachyons propagating in loops;

since we wish to excise tachyons from the spectrum, the signs needs to be chosen so that

these terms vanish. We have∑
g∈Z2

2

σ(~ς) eiπς1√p1 =
√
p1

(
σ(0, 0)− σ(1, 0) + σ(0, 1)− σ(1, 1)

)
(4.78)

∑
g∈Z2

2

σ(~ς) eiπς2√p2 = +
√
p2

(
σ(0, 0) + σ(1, 0)− σ(0, 1)− σ(1, 1)

)
(4.79)

90



∑
g∈Z2

2

σ(~ς)
√
p3 =

√
p3

(
σ(0, 0) + σ(1, 0) + σ(0, 1) + σ(1, 1)

)
, (4.80)

and we need all of these to vanish, so we need to set

σ(0, 0) = σ(1, 1) = −σ(1, 0) = −σ(0, 1) . (4.81)

A suitably normalized GSO projection is given, then, by the weighting σ(~ς) = 1
4eiπ(ς1+ς2).

For the remaining term, this gives∑
g∈Z2

2

σ(~ς) eiπ(ς1+ς2)√p1p2p3 =
√
p1p2p3 , (4.82)

and so after carrying out the Berezin integration and the GSO projection, we are left only

with the massless sector, entering Eq. (4.73) via the term F̂111.

The amplitude is obtained by integrating the measure dµFgh F‖F⊥Fscal from Eq. (4.73)

and multiplying by an overall factor

A = C2

2∏
i=1

( 1

cos(πεi)

)∫
dµFgh F‖F⊥Fscal (4.83)

where Ch, the normalization factor for an h-loop string amplitude in terms of the d-

dimensional Yang-Mills coupling g, is calculated in Appendix A of [100] and is given for

h = 2 by

C2 =
1

(2π)2d
(2α′)−dg2(α′)2 =

g2

(4π)d
(α′)2

(2πα′)d
. (4.84)

The other prefactor in Eq. (4.83) is equal to
(

cos(πε1) cos(πε2)
)−1

= 1 + O(α′2) so we

can neglect it in the field theory limit. Plugging Eq. (4.73) into Eq. (4.83) with the GSO

projection carried out, we find

A =
g2(α′)2

(4π)d

∫ 3∏
i=1

[
dpi
pi

e−tim
2
i

]
dθ̂12 dφ̂12 ∆

− d−2
2

0 ∆−1
F F̂111 +O(α′) +O(e−1/α′) (4.85)

Using dpi/pi = −dti/α
′, we find that the QFT limit is given by

AQFT = lim
α′→0

A (4.86)

=
g2

(4π)d

∫ ∏3
i=1 dti e−tim

2
i

∆
d−2
2

0 ∆F

(
− 1

α′

∫
dθ̂12 dφ̂12 F̂111

)
, (4.87)

If we write

f i1j1k1gh f i2j2k2‖ f i3j3k3⊥ f i4j4k4scal = − 1

α′

∫
dθ̂12 dφ̂12 F̂i1j1k1

gh F̂i2j2k2
‖ F̂i3j3k3

⊥ F̂i4j4k4
scal , (4.88)
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with

f000
gh = f000

‖ = f000
⊥ = f000

scal = 1 , (4.89)

then from Eq. (4.74) we see we have

− 1

α

∫
dθ̂12 dφ̂12 F̂ijk =

∞∑
i`,j`,k`=0

{
f i1j1k1gh f i2j2k2‖ f i3j3k3⊥ f i4j4k4scal

× δ(i1+...+i4),i δ(j1+...+j4),j δ(k1+...+k4),k

}
. (4.90)

Substituting this for F̂111 in Eq. (4.87), we get

AQFT =

1∑
i`,j`,k`=0

g2
d

(4π)d

∫ ∏3
i=1 dti e−tim

2
i

∆
d−2
2

0 ∆F

{
f i1j1k1gh f i2j2k2‖ f i3j3k3⊥ f i4j4k4scal

× δ(i1+...+i4),1 δ(j1+...+j4),1 δ(k1+...+k4),1

}
(4.91)

=
g2
d

(4π)d

∫ ∏3
i=1 dti e−tim

2
i

∆
d−2
2

0 ∆F

{
f111
‖ + f110

‖ f001
⊥ + . . . (25 more terms)

}
. (4.92)

We can read off the various terms in the integrand by picking the coefficients of the

appropriate
√̃
pi’s from F‖ in Eq. (4.64), F⊥ in Eq. (4.66), Fscal in Eq. (4.68) and dµFgh

in Eq. (4.50) and writing down the coefficient of θ̂12 φ̂12, divided by α′. We have

f111
‖ =

2

∆F

sinh(gB1t1)

gB1
cosh(2gB1t1 − gB2t2 − gB3t3) (4.93)

+ cyclic permutations of (ti, Bi) ,

f110
‖ f001

⊥ =
2(d− 2)

∆0
cosh(2gB1t1 − 2gB2t2) t3 (4.94)

f001
‖ f110

⊥ =
2(d− 2)

∆F

sinh(gB3t3)

gB3
cosh(2gB3t3 − gB1t1 − gB2t2) (4.95)

f111
⊥ =

(d− 2)(d− 3)

∆0
(t1 + t2 + t3) (4.96)

f110
gh f001

‖ = − 2

∆F

sinh(gB3t3)

gB3
cosh(2gB3t3 − gB1t1 − gB2t2) , (4.97)

f110
gh f001

⊥ = −d− 2

∆0
t3 , (4.98)

f110
gh f001

scal = m2
3 −m2

1 −m2
2 , (4.99)

f110
scalf

001
‖ =

2Ns

∆F

sinh(gB3t3)

gB3
cosh(2gB3t3 − gB1t1 − gB2t2) , (4.100)

f110
scalf

001
⊥ =

(d− 2)Ns

∆0
t3 , (4.101)

f110
‖ f001

scal = 2(m2
1 +m2

2 −m2
3) cosh(2gB1t1 − 2gB2t2) , (4.102)

f110
⊥ f001

scal = (d− 2)(m2
1 +m2

2 −m2
3) , (4.103)

f111
scal = (Ns − 1)(m2

1 +m2
2 +m2

3) . (4.104)
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(a) (b) (c)

Figure 4.4: Possible topologies for 2-loop vacuum graphs with 3- and 4-point vertices.

(a) (b) (c)

Figure 4.5: Three possible topologies for a double annulus with at least two pinched cycles:
non-separating (Fig. 4.4a), separating (Fig. 4.5b) a,nd incomplete (Fig. 4.5c).

The other terms in the integrand can be obtained from these by cyclic symmetry, i.e. f101
‖ f101

⊥
can be obtained from f110

‖ f001
⊥ in Eq. (4.94) by cycling (t1, t2, t3;B1, B2, B3)→ (t3, t1, t2;B3, B1, B2),

and so on.

Eq. (4.91) doesn’t give the full 2-loop vacuum amplitude with this topology, because

it is calculated with the worldsheet boundaries on 3 fixed D-branes (i.e. fixed Chan-Paton

factors). To calculate the full amplitude, it is necessary to sum over all possible choices of

D-branes for each of the three boundaries. Since the D-branes are distinguished only by

the strengths of the background fields on their worldvolumes Bi and their relative positions

in the transverse directions Y ij
I , this is equivalent to summing the preceding expressions

over all possible values of Bij and mij
I . That is to say, the full contribution to the vacuum

amplitude from diagrams with this topology will be given by the sum

AQFT =

N∑
i,j,k=1

(
AQFT

∣∣∣ B1=Bij ,
m2

1=m2
ij ,

B2=Bjk,
m2

2=m2
jk,

B3=Bki,
m2

3=m2
ki

)
, (4.105)

where a string stretched between the ith and jth D-branes feels a background field pro-

portional to Bij ≡ Bi −Bj and has a classical mass of |mij | (recall Eq. (4.3)).

4.6 Incomplete and separating degenerations

The integral calculated in the previous section corresponds to the sum of all two-loop

QFT diagrams with the topology of figs. Fig. 4.4a. The full 2-loop vacuum amplitude

includes other Feynman diagrams with the topology of Fig. 4.4c, i.e. with a quartic vertex,

and 1-particle-reducible (1PR) diagrams with the topology of Fig. 4.4b. We don’t need

to calculate the 1PR graphs to compute the effective action, but it is crucial to include

the diagrams with quartic vertices. There are two topologically distinct ways a double-

annulus worldsheet can totally degenerate: the non-separating degeneration of fig. 4.5a
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and the separating degeneration of fig. 4.5b; the QFT limit of the string amplitude also

gains contributions from the incomplete degeneration in fig. 4.5c where only two homology

cycles are pinched; this interpolates between the two total degenerations. The separating,

non-separating and incomplete degenerations all come from the region of super-moduli

space in which the two Schottky multipliers k1 and k2 are small; the degenerations differ

in the value of the third bosonic modulus u (or y), which is a super-projective invariant

of the four Schottky fixed points. The separating degeneration corresponds to the limit

y → 0 while the non-separating degeneration corresponds to the limit u → 0, while the

incomplete degeneration comes from the rest of the moduli space.

When we truncated the measure to low order in the pis, we actually excised the con-

tribution from the incomplete degeneration and from the separating degeneration. It is

therefore necessary to retrace our steps to the measure expressed in terms of kµ and u (or

y) in Eq. (4.37). Not counting the factors on the first two lines, the expression contains

5 types of terms: some proportional to either k
1
2
1 or k

1
2
2 on their own; some proportional

to − y
uk

1
2
1 k

1
2
2 = k

1
2
3 + O(kµ); some proportional to yk

1
2
1 k

1
2
2 = k(S1S2)

1
2 + O(kµ), and some

proportional to k
1
2
1 k

1
2
2 without these prefactors. Retracing the calculation of the previous

section, we find that the terms proportional to k
1
2
1 , k

1
2
2 and − y

uk
1
2
1 k

1
2
2 are transformed into

terms proportional to
√
p1p3,

√
p2p3 and

√
p1p2, respectively. The other two types of terms

— those which originate from S1S2 or those which are a product of a factor coming from

S1 and a factor coming from S2 — disappear as O(pi) corrections.

They do, however, contribute to the QFT limit; we hope that they give the remaining

Feynman diagrams. Since the worldsheets no longer have a three-fold symmetry, we don’t

have to worry about needing a three-fold symmetry parametrization. The idea, then, is

to remove from Eq. (4.37) the terms proportional to k
1
2
1 , k

1
2
2 or k

1
2
3 which we’ve already

accounted for in the pi parametrization, relate k1 and k2 to Schwinger parameters as we

did with the pi for the non-separating degeneration, and integrate over the third bosonic

modulus. We split [dm]2 from Eq. (4.37) up into a part [dm]non-sep
2 whose QFT limit is

already accounted for, and another part [dm]rem
2 which vanishes at O(pi).

[dm]02 = [dm]non-sep
2 + [dm]rem

2 (4.106)

[dm]rem
2 =

dk1

k
3/2
1

dk2

k
3/2
2

du

y
dθ dφ

[
det (Im τ )

]− d−2
2

det (Im τ~ε)
k

1
2
1 k

1
2
2 (4.107)

× kα
′m2

1
1 k

α′m2
2

2 uα
′(m2

3−m2
1−m2

2)k
− ε

2
1
2

1 k
− ε

2
2
2

2 u−ε1ε2

×
{(
d− 2 + kε11 u

ε2 + k−ε11 u−ε2 +Ns − 2
)

×
(
d− 2 + kε22 u

ε1 + k−ε22 u−ε1 +Ns − 2
)

− y
(
d− 2 + kε11 k

ε2
2 u

ε1+ε2 + k−ε11 k−ε22 u−ε1−ε2 +Ns

)}
+O(kµ) .

=
3∏
i=1

[
dpi

p
3/2
i

]
dθ̂12 dφ̂12

[
det (Im τ )

]− d−2
2

det (Im τ~ε)

(
0 +O(pi)

)
. (4.108)

To find the field theory limit of Eq. (4.107), we replace integration over the two multipliers
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kµ with integration over dimensionful Schwinger parameters similarly to Eq. (4.62) but

here we have only two:

kµ = e−
tµ
α′ , µ = 1, 2 ; (4.109)

we also replace εµ according to Eq. (4.63). Making these substitutions in det(Im τ ) as

given in Eq. (2.243) and det(Im τ~ε) as given in Eq. (3.59), we find

[
det (Im τ )

]− d−2
2 =

((2πα′)2

t1t2

) d
2
−1

+O
(
(α′)d−1

)
(4.110)

det (Im τ~ε)
−1 = (2πα′)2 gB1

sinh(gB1t1)

gB2

sinh(gB2t2)
+O

(
(α′)3

)
. (4.111)

Performing the sum over spin structure as in Eq. (4.81) (where we recall that the spin

structures are not exhibited explicitly but are implicit in the signs of k1
1
2 and k2

1
2 ), the

integrals over the multipliers dkµ become

∑
~ς

1

4
eiπ(ς1+ς2) dk1

k
3/2
1

dk2

k
3/2
2

k
1
2
1 k

1
2
2 =

1

(α′)2
dt1 dt2 . (4.112)

The factor in the second line of Eq. (4.107) becomes

k
α′m2

1
1 k

α′m2
2

2 uα
′(m2

3−m2
1−m2

2)k
− ε

2
1
2

1 k
− ε

2
2
2

2 u−ε1ε2 = e−t1m
2
1−t2m2

2 +O(α′) , (4.113)

and we have

kε11 u
ε2 + k−ε11 u−ε2 = 2 cosh(2gB1t1) +O(α′) (4.114)

kε22 u
ε1 + k−ε22 u−ε1 = 2 cosh(2gB2t2) +O(α′) (4.115)

kε11 k
ε2
2 u

ε1+ε2 + k−ε11 k−ε22 u−ε1−ε2 = 2 cosh(2gB1t1 + 2gB2t2) +O(α′) . (4.116)

We can rewrite Eq. (4.107), then, as

[dm]rem
2 =

(2πα′)d

(α′)2

[ 2∏
i=1

dti e−tim
2
i gBi

t
d/2−1
i sinh(gBiti)

]
dudθ dφ (4.117)

×
{1

y

(
d− 2 + 2 cosh(2gB1t1) +Ns − 2

)
×
(
d− 2 + 2 cosh(2gB2t2) +Ns − 2

)
−
(
d− 2 + 2 cosh(2gB1t1 + 2gB2t2) +Ns

)}
+O(e−tµ/α

′
) +O(α′) .

Inserting this measure in Eq. (4.83) with the normalization constant given in Eq. (4.84)

as we did with [dm]non-sep
2 , we obtain

Arem
QFT = lim

α′→0

g2

(4π)d
(α′)2

(2πα′)d
[dm]rem

2 (4.118)
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=
g2

(4π)d

∫ ∞
0

[ 2∏
i=1

dti e−tim
2
i gBi

t
d/2−1
i sinh(gBiti)

]
(4.119)

×
{
I1

(
d− 2 + 2 cosh(2gB1t1) +Ns − 2

)
×
(
d− 2 + 2 cosh(2gB2t2) +Ns − 2

)
− I2

(
d− 2 + 2 cosh(2gB1t1 + 2gB2t2) +Ns

)}
.

Where I1 and I2 denote the two Berezin integrals

I1 =

∫
M̂u|θφ

du

y
dθ dφ I2 =

∫
M̂u|θφ

du dθ dφ . (4.120)

These can be calculated with Stokes’ theorem for a supermanifold with a boundary (see

section 3.4 of [83]). We can reexpress them in terms of integral forms:

I1 =

∫
M̂u|θφ

du
1

y
δ2(dθ, dφ) I2 =

∫
M̂u|θφ

du δ2(dθ, dφ) . (4.121)

but these integral forms can be expressed as exterior derivatives:

du

y
δ2(dθ, dφ) = dν1 ; du δ2(dθ, dφ) = dν2 ; (4.122)

ν1 = − log(y) δ2(dθ, dφ) , ν2 = u δ2(dθ, dφ) . (4.123)

The integrals can therefore be replaced with integrals over the boundary of M̂u|θφ, which

is just the two loci u = 0 and y = 0, with opposite orientation. The log(y) in ν1 diverges at

y = 0 so we will regulate by evaluating I1 at y = ε then taking ε→ 0. The measures need

to be expressed in terms of the appropriate bosonic moduli for each boundary component,

so for u→ 0 we need to write

ν1 = −
(

log(1− u) +
θφ

1− u

)
δ2(dθ, dφ) . (4.124)

This gives us

I1 =

∫
y=ε
ν1 −

∫
u=0
ν1 = −

∫
log(ε) δ2(dθ, dφ) +

∫
(log(1) + θφ) δ2(dθ, dφ)

= −
∫

dθ dφ log(ε) +

∫
dθ dφ θφ = −1 (4.125)

where in the last line we used the usual Berezin integral. There is no dependence on the

cutoff ε. Similarly, to compute I2 we need to express u as 1− y + θφ near y = 0, and we

find

I2 =

∫
y=0
ν1 −

∫
u=0
ν1 =

∫
(1 + θφ) δ2(dθ, dφ))− 0 (4.126)

=

∫
dθ dφ (1 + θφ) = −1 . (4.127)
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Inserting the values for I1 and I2 from Eq. (4.125) and Eq. (4.127) into Eq. (4.119), we

obtain an expression for the remaining part of the field theory amplitude.

Arem
QFT = − g2

(4π)d

∫ ∞
0

[ 2∏
i=1

dti e−tim
2
i gBi

t
d/2−1
i sinh(gBiti)

]
(4.128)

×
{(
d− 2 + 2 cosh(2gB1t1) +Ns − 2

)
×
(
d− 2 + 2 cosh(2gB2t2) +Ns − 2

)
−
(
d− 2 + 2 cosh(2gB1t1 + 2gB2t2) +Ns

)}
.

We can retrace our steps of the calculation and express this in terms of the various world-

sheet CFTs the terms originated from as we did for the non-separating degeneration in

Eq. (4.91); we find

Arem
QFT = − g2

(4π)d

∫ ∞
0

[ 2∏
i=1

dti e−tim
2
i gBi

t
d/2−1
i sinh(gBiti)

]{
f11
‖ + f11

⊥ + f11
scal (4.129)

+
(
f10
‖ + f10

⊥ + f10
scal + f10

gh

)(
f01
‖ + f01

⊥ + f01
scal + f01

gh

)}
,

where

f10
‖ = 2 cosh(2gB1t1) f10

⊥ = d− 2 f10
scal = Ns f10

gh = −2 (4.130)

f01
‖ = 2 cosh(2gB2t2) f01

⊥ = d− 2 f01
scal = Ns f01

gh = −2 (4.131)

f11
‖ = −2 cosh

(
2g(B1t1 +B2t2)

)
f11
⊥ = −(d− 2) f11

scal = −Ns . (4.132)

Note there is no contribution f11
gh ; this corresponds to the fact that in the infinite product

in Fgh(ki, η) in Eq. (4.9), n ranges from 2 to ∞, not from 1 to ∞ as in Fgl and Fscal, and

therefore there is no term proportional to
√
k(S1S2) in that CFT.

The second line of Eq. (4.129) can be factorized; we can write

Arem
QFT = − g2

(4π)d

∫ ∞
0

[ 2∏
i=1

dti e−tim
2
i gBi

t
d/2−1
i sinh(gBiti)

]{
f11
‖ + f11

⊥ + f11
scal

}
(4.133)

− g2
2∏
i=1

[
1

(4π)d/2

∫ ∞
0

dti

t
d/2−1
i

e−tim
2
i gBi

sinh(gBiti)

(
f i‖ + f i⊥ + f iscal + f igh

)]
,

where

f i‖ = 2 cosh(2gBiti) f i⊥ = d− 2 f iscal = Ns f igh = −2 . (4.134)

4.7 Comparison with bosonic string theory

There are a number of differences between our approach, which uses the NS sector of an

superstring, and the approach in previous works [101, 16, 94] which uses bosonic string

theory; the differences are also discussed in [1].
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The first difference is that the worldsheets are 2-dimensional manifolds, not superman-

ifolds; these can be parametrized as Riemann surfaces. We are focusing on open string

world-sheets with boundaries but no handles; in the simplest case, the relevant world-sheet

has the topology of the disk, which can be conformally mapped to C
+

, the upper-half part

of the complex plane plus the point at infinity, with the real line representing the bound-

ary. Higher-genus Riemann surfaces can be constructed with Schottky groups, i.e. as the

quotient of a subset of C
+

by a free group of projective transformations subject to certain

conditions. Schottky groups are described in section 2.3.1.

To give an example of the typical form of the expressions for geometric objects in

the Schottky parametrization, let us begin by considering the measure of integration for

the disk with all three boundaries lying on the same D-brane, so all open strings are

uncharged. If we use SL(2,R) invariance of the amplitude to choose the fixed points of

the two Schottky group generators as

η1 = 0 ; ξ1 =∞ ; η2 = η ; ξ2 = 1 ; (4.135)

and denote their multipliers as k1, k2, then the amplitude can be written as

[dm]02 =
dk1 dk2 dη

k2
1 k

2
2 (1− η)2

Fgh(ki, η)F
(0)
gl (ki, η)Fscal(ki, η) , (4.136)

which is the bosonic string analogue analogue of Eq. (4.4), where again we have labelled

the various factors anticipating the role that they are going to play in the field theory

limit, as discussed below. Note that the integration variable η is not just one of the four

fixed points; it is also equal to the projective-invariant cross ratio η = (η1, η2, ξ1, ξ2) in the

notation of Eq. (2.205). As we did in the NS sector, we factorize F
(0)
gl = F‖(ki, η)F⊥(ki, η)

into a part in the same plane as the magnetic fields and a perpendicular part. With the

appropriate modifications of the measure in [7] as derived in [16], we obtain

Fgh(ki, η) = (1− k1)2 (1− k2)2
∏
α

′ ∞∏
n=2

(1− knα)2 ,

F‖(ki, η) = e−iπ~ε·τ ·~ε
[

det (Im τ~ε)
]−1∏

α

′ ∞∏
n=1

(
1− e 2πi~ε·τ · ~Nα knα

)−1(
1− e−2πi~ε·τ · ~Nα knα

)−1
,

F⊥(ki, η) =
[

det (Im τ)
]− d−2

2
∏
α

′ ∞∏
n=1

(1− knα)−d+2 , (4.137)

Fscal(ki, η) =

Ns∏
I=1

e2πiα′ ~mI ·τ ·~mI
∏
α

′ ∞∏
n=1

(1− knα)−Ns .

As in the NS sector, the product
∏
α
′ is over all elements Tα ∈ S(2) which are not integer

powers of other elements, taken modulo cyclic permutations of their factors, and with the

identity excluded; τ is the period matrix of the Riemann surface, whose expression in the

Schottky parametrization can be found, for instance, in Eq. (A.14) of [8].

τ~ε is the twisted period matrix; the bosonic equivalent of τ~ε ; it is explained how to

compute τ~ε in section 3.2. As in the NS amplitude, det (Im τ) has been replaced with
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det (Im τ~ε) for the sector with twisted periodicity.

The most obvious difference between the measures in Eq. (4.136) and Eq. (4.4) is the

occurrence of square roots of the multipliers as well as integer powers. In the bosonic

string, the mass level of states propagating in the µth loop increases with the power of kµ,

while in the superstring the mass level of states propagating in the µth loop increases with

the power of kµ
1
2 . Necessarily, the propagation of a massless state must correspond to a

term like dkµ/kµ = d log kµ in the integrand, so tachyons propagating in loops correspond

to terms like dkµ/k
2
µ in the bosonic theory and dkµ/k

3/2
µ in the superstring, which is why

terms like these appear in Eq. (4.136) and Eq. (4.4), respectively.

In both theories, we can find the QFT amplitude by expanding the measure in powers

of kµ for the bosonic string or kµ
1
2 for the superstring, isolating the term corresponding

to massless states propagating in all loops, then taking the α′ → 0 limit. An important

difference is that while this amounts to an ad hoc removal of the tachyonic states by hand

in the bosonic theory, this is not necessary with superstrings for they are automatically

eliminated from the spectrum upon integrating over the odd moduli and carrying out

the GSO projection. In both theories, higher-level states become infinitely massive and

decouple in the α′ → 0 limit.

To find the QFT diagrams with the topology of Fig. 4.4a, we need to switch to param-

eters pi defined by the same equations as in Eq. (4.39) but with k3 denoting the multiplier

of the Schottky group element S−1
1 S2 instead of the super-Schottky group element S−1

1 S2.

Then the cross-ratio of the four fixed points becomes

η =
(1 + p1)(1 + p2)p3

(1 + p3)(1 + p1p2p3)
, (4.138)

and the integration measure become symmetric:

dk1

k2
1

dk2

k2
2

dη

(1− η)2
(1−k1)2(1−k2)2 =

dp1

p2
1

dp2

p2
2

dp3

p2
3

(1−p2p3)(1−p1p3)(1−p1p2) . (4.139)

While the massless sector of the bosonic string amplitude in the pi parameters ends up

the same as the corresponding amplitude in the NS sector of the superstring, various

contributions can arise in slightly different ways in the two approaches. For example, the

twisted determinant for the bosonic string det (Im τ~ε) is given at lowest order in kµ by

det (Im τ~ε) =
1

4π2
Γ(−ε1)Γ(−ε2)Γ(ε1 + ε2)

(
ε1
(
k
ε1
2

1 η−
ε1−ε2

2 − k−
ε1
2

1 η−
ε1+ε2

2
)

×
(
k
ε2
2

1 η
ε1−ε2

2 − k−
ε2
2

2 η−
ε1−ε2

2
)

2F1(1− ε1,−ε2; 1− ε1 − ε2; η)

+
(
ε2k

ε1
2

1 η−
ε1
2
(
k
ε2
2

1 η
ε1
2 − k−

ε2
2

2 η−
ε1
2
)

+ ε1k
− ε2

2
2 η−ε1−

ε2
2
(
k
ε1
2

1 η
ε2
2 − k−

ε1
2

1 η−
ε2
2
))

× 2F1(−ε1, ε2; 1− ε1 − ε2; η)

)
+ (εµ ↔ −εµ) +O(kµ) . (4.140)

We can expand this to first order in p3 with the substitutions in Eq. (4.39) and Eq. (4.138),

using Eq. (4.54) to expand the hypergeometric functions. Rewriting in terms of the field
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theory variables with Eq. (4.62) and Eq. (4.63), we get

det (Im τ~ε) =
1

4π2(α′)2

(
∆F − 2α′p3 cosh(2gB3t3 − gB1t1 − gB2t2)

sinh(gB3t3)

gB3

)
+O(p1, p2, p

2
3) +O(α′) , (4.141)

where ∆F is defined in Eq. (4.65). The term proportional to p3 in Eq. (4.141) will end

up as one of the factors in a Feynman diagram with a gluon polarized parallel to the

magnetic field propagating in the leg t3. The p3 term here receives a contribution from

the first-order term in the series expansion of the hypergeometric function, Eq. (4.54).

For the superstring, the situation changes: we keep terms only of order
√
pi, because

terms of order pi and higher will become massive states which decouple. This means

that all of the hypergeometric functions in the expression for the supersymmetric twisted

determinant, Eq. (3.59), are equivalent to unity. To get the analogue of Eq. (4.140), an

expression for the supersymmetric twisted determinant at lowest order in the kµ, we take

the first five lines of Eq. (3.59). If we set θφ → 0 and u → η, then this is identical to

Eq. (4.140), i.e.

det (Im τ~ε) = det (Im τ~ε)

∣∣∣∣
η=u

+O(θφ) +O(kµ) . (4.142)

To check this requires relations between contiguous hypergeometric functions (§14.7 of

[102]) which are not included in Mathematica.

Since the first-order term in the expansion of the hypergeometric functions is crucial to

getting the correct coefficient of p3 in Eq. (4.141), which is important to obtain matching

with QFT diagrams, it is necessary that the O(θφ) term in Eq. (4.142) will compensate

the fact that the hypergeometric functions are equivalent to unity at order
√
p3.

This is exactly the situation. The O(θφ) term in Eq. (4.142), i.e. the fourth and fifth

lines of det (Im τ~ε) in Eq. (3.59), has the right form that when the variables u, kµ are

rewritten in terms of pi using Eq. (4.39) and the nilpotent object θφ is rewritten in terms

of θ̂12φ̂12 using Eq. (4.47), we obtain an expression for det (Im τ~ε) which is almost exactly

the same as the corresponding expression for det (Im τ~ε) at lowest order in p1 and p2, but

with the replacement p3 →
√
p3θ̂12φ̂12. In terms of the field theory variables we have

det (Im τ~ε) =
1

4π2(α′)2

(
∆F − 2α′

√
p3θ̂12φ̂12 cosh(2gB3t3 − gB1t1 − gB2t2)

sinh(gB3t3)

gB3

)
+O(

√
p1,
√
p2, p3) +O(α′) . (4.143)

Note that the p3 and
√
p3 θ̂12φ̂12 terms in det (Im τ~ε) and det (Im τ~ε), respectively, also

receive contributions from sources other than the ones we have discussed, namely factors

like ηniεµ/2 and uniεµ/2, respectively. But it is easy to see that these contribute to both

sides of Eq. (4.142) in the same way, since we have

ηniεµ/2 = p
niεµ/2
3

(
1 +

niεµ
2
p3

)
+O(p1, p2, p

2
3) (4.144)
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uniεµ/2 = p
niεµ/2
3

(
1 +

niεµ
2

√
p3 θ̂12φ̂12

)
+O(

√
p1,
√
p2, p3) . (4.145)

There is a similar relationship between det (Im τ~ε) and det (Im τ~ε). So as required, when

all of the other factors are inserted, the coefficient of p1p2p3 in the bosonic string mea-

sure is the same as the coefficient of eiπ(ς1+ς2)√p1p2p3 θ̂12φ̂12 in the superstring measure,

and the same QFT amplitude is obtained for the massless sectors of the bosonic and

supersymmetric theories.

The terms computed in section 4.6, which vanish in the pi parametrization and corre-

spond to QFT diagrams with the topology of Fig. 4.4b and Fig. 4.4c also appear in the

bosonic theory, where they similarly disappear when the pi parameters are used. We get

once more Eq. (4.119) for the QFT limit, but with I1 and I2 now representing the integrals

I1 =

∫ 1

0

dη

(1− η)2
, I2 = −

∫ 1

0
dη. (4.146)

In the superstring case we used two different super-projective cross-ratios u and y to

compute the integral over the third bosonic modulus. In this case, however, any projective

cross-ratio of four points can be related in a simple way to any other projective cross-ratio

of the same four points (the analogous statement does not hold for super-projective cross-

ratios, see e.g. Eq. (2.220)), so we stick with η and integrate it between 0 and 1.

Clearly, the bosonic I2 = −1 as in Eq. (4.120). The bosonic I1, on the other hand,

clearly diverges without regularization. A number of arguments are given in section 5 of

[103] that integrals similar to this (for diagrams with external momenta) should be set

to I2 = −1
2 . For example, expanding the integrand as a series in η and integrating term

by term gives 1 + 1 + . . . = −1
2 using ζ-function regularization arguments. In particular,

this result gives the correct QFT limit in that case. This differs from our calculation of I1

for the superstring in Eq. (4.125) by a factor of 1
2 . This means that while our calculation

of this term in the superstring case was finite and didn’t need regularization unlike the

bosonic case, it has the wrong factor to provide a 1–1 match with Feynman diagrams

with the relevant topology (e.g. Fig. 4.4b), for which I1 = −1
2 is the result required for

diagram-by-diagram matching between QFT and string theory. The discrepancy may arise

from an assumption that only states from the massless sector can propagate through the

separating edge, following from momentum conservation, but perhaps the string theory

result in fact includes contributions from higher mass levels which wouldn’t appear in the

QFT analysis of the massless sector. It is also possible that the discrepancy arises from

an incorrect choice of bosonic integration variable for this topology, and that a careful

analysis of the sewing procedure will lead to the correct result.
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Chapter 5

Yang-Mills theory in background

Gervais-Neveu gauge

In this chapter we investigate vacuum diagrams for a U(N) Yang-Mills gauge field mini-

mally coupled to an adjoint scalar in a covariantly constant background field. We use an

appropriate modification of the non-linear gauge introduced by Gervais and Neveu [11] to

match diagrams with terms obtained from the α′ → 0 limit of string theory. We also give

a vacuum expectation value (VEV) to the scalar field (breaking the gauge symmetry) so

it will act as an IR regulator.

5.1 The Lagrangian

The Lagrangian is obtained by dimensionally reducing the pure Yang-Mills Lagrangian

from D dimensions to d < D dimensions. We split the gauge field AM up into a

fixed classical background AM and a quantum field QM : AM = AM + QM , where

M = 0, . . . , D − 1. The field strength FMN can be expressed in terms of the covariant

derivative DAM = ∂M + i g[AM , ·] as

FMN =
1

i g
[DAM ,D

A
N ] = FMN + DMQN −DNQM + i g[QM ,QN ] , (5.1)

where we have split the covariant derivative as

DAM = ∂M + i g[AM , ·] + i g[QM , ·] ≡ DM + i g[QM , ·] , (5.2)

i.e. DM (without an A) denotes the covariant derivative with respect to the background

gauge field. FMN = ∂MAN − ∂NAM is the background field strength. The classical

Lagrangian is given, then, by

Lcl = −1

2
Tr(FMNFMN ) (5.3)

= Tr
(
− 1

2
FMNF

MN + DµQνDNQM −DMQNDMQN + 2i gQMFMNQ
N

− 2i gDMQN [QM , QN ] +
1

2
g2[QM ,QN ][QM ,QN ]

)
(5.4)
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where Tr(·) here denotes the trace over the u(N) Lie algebra. We have removed a term

linear in QM because it can be absorbed into a redefinition of the current.

The gauge condition we want to impose is

G = DMQM + i γgQMQM = 0 , (5.5)

where γ is a gauge parameter, so the gauge-fixing Lagrangian Lgf is given as

Lgf = −Tr
((

DMQM + i γgQMQM
)2)

(5.6)

= −Tr
(
DMQMDNQN + 2i γgDMQMQNQN − γ2g2QMQMQNQN

)
. (5.7)

Using partial integration and the cyclic property of Tr(.), we can combine Lcl from Eq. (5.4)

and Lgf from Eq. (5.7) as

Lcl + Lgf = Lbf + Tr
(
QMDNDNQM + 4i gQMFMNQN + 2i gγDMQMQNQN (5.8)

+ 2i gDMQN [QM ,QN ] + g2(ηRMηSN + (γ2 − 1)ηRNηSM )QMQNQRQS
)

where we’ve separated the classical Lagrangian for the background field, Lbf = −1
2Tr(FMNF

MN ).

Lastly, we need the Lagrangian for the Faddeev-Popov ghost fields C, C, which can be

found by computing the variation δθG with respect to a gauge transformation of the gauge

condition Eq. (5.5), then making the replacement δθQM → θDAMC, and inserting this into

Tr[c, ·], which gives

Lgh = 2Tr
(
− CDMDMC + i gDMC[QM , C]− i γg C{QM ,DMC}+ γg2C{QM , [QM , C]}

)
.

(5.9)

Now we have the full pure Yang-Mills lagrangian in D dimensions; we want to dimension-

ally reduce to d dimensions. The D-dimensional gauge field splits into a d-dimensional

gauge field and Ns ≡ D − d adjoint scalars:

(QM )→ (Qµ; ΦI) (5.10)

for µ = 0, . . . , d−1; I = 1, . . . , Ns; while the covariant derivative splits into a d-dimensional

covariant derivative and a commutator with the background scalar fields, which we will

give VEVs to:

(DM )→ (Dµ ≡ ∂µ + i g[Aµ, ·]; i [MI , ·]) . (5.11)

Note that the D-dimensional d’Alembertian splits into a d-dimensional d’Alembertian plus

a mass term:

DMDMX = DµD
µX + [MI , [MI , X]] , (5.12)

where for the reduced dimensions, our summation notation does not include the negative

signature of the metric, and just means a summation over the flavour indices AIBI =
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∑Ns
I=1AIBI . The dimensionally-reduced Lagrangian can be written as the sum of the

following terms:

LQ2 = Tr[Qµ(DνD
νQµ + 4i gFµρQρ + [MI , [MI ,Qµ]])] (5.13)

LΦ2 = Tr[−ΦIDνD
νΦI − ΦI [MJ , [MJ ,ΦI ]]] (5.14)

LCC = Tr[−2CDµD
µC − 2C[MJ , [MJ , C]]] (5.15)

LQ3 = −2i gγTr[DµQµQνQν ]− 2i gTr[DµQν [Qµ,Qν ]] (5.16)

LQΦ2 = 2i gγTr[DµQµΦIΦI ] + 2i gTr[DµΦI [Qµ,ΦI ]] (5.17)

LCCQ = 2i gTr[DµC[Qµ, C]]− 2i γgTr[C{Qµ,DµC}] (5.18)

LΦQ2 = −2γgTr[[MI ,ΦI ]QµQ
µ]− 2gTr[[MI ,Qµ][ΦI ,Qµ]] (5.19)

LΦ3 = 2γg[[MI ,ΦI ]ΦJΦJ ] + 2gTr[[MI ,ΦJ ][ΦI ,ΦJ ]] (5.20)

LΦCC = 2gTr[[MI , C][ΦI , C]]− 2γgTr[C{ΦI , [MI , C]}] (5.21)

LQ4 = g2(ηρµηνσ + (γ2 − 1)ηρνησµ)Tr[QµQνQρQσ] (5.22)

LQ2Φ2 = −2g2Tr[ΦIQµΦIQµ]− 2(γ2 − 1)g2Tr[ΦIΦIQµQµ] (5.23)

LΦ4 = g2Tr[ΦIΦJΦIΦJ ] + (γ2 − 1)g2Tr[ΦIΦIΦJΦJ ] (5.24)

LCCQ2 = 2γg2Tr[C{Qµ, [Qµ, C]}] (5.25)

LCCΦ2 = −2γg2Tr[C{ΦI , [ΦI , C]}] . (5.26)

The gauge condition Eq. (5.5) has become

G̃ ≡ DµQµ + i γgQµQµ − i [MI ,ΦI ]− i γgΦIΦI = 0 . (5.27)

5.2 The Lagrangian in component form

Now, let us assume that Aµ and MI all commute and pick a basis of u(N) in which they

are diagonal. In this basis, let us write

MI =


m1
I 0 . . . 0

0 m2
I . . . 0

...
...

. . .
...

0 0 . . . mN
I

 Aµ =


A1
µ 0 . . . 0

0 A2
µ . . . 0

...
...

. . .
...

0 0 . . . ANµ

 (5.28)

Qµ =
1√
2


Q11
µ . . . Q1N

µ
...

. . .
...

QN1
µ . . . QNNµ

 ΦI =
1√
2


φ11
I . . . φ1N

I
...

. . .
...

φN1
I . . . φNNI

 (5.29)

C =
1√
2


c11 . . . c1N

...
. . .

...

cN1 . . . cNN

 C =
1√
2


c11 . . . c1N

...
. . .

...

cN1 . . . cNN

 . (5.30)
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all satisfying Xij = (Xji)∗ since u(N) matrices are Hermitian. Notice that the covariant

derivative does not mix between the entries of a matrix:

Dµ(Xij) =


∂µX

11 (∂µ + i gA12
µ )X12 . . . (∂µ + i gA1N

µ )X1N

(∂µ + i gA21
µ )X21 ∂µX

22 . . . (∂µ + i gA2N
µ )X2N

...
...

. . .
...

(∂µ + i gAN1
µ )XN1 (∂µ + i gAN2

µ )XN2 . . . ∂µX
NN

 (5.31)

where we’ve defined

Aijµ ≡ Aiµ −Ajµ . (5.32)

Motivated by this, we can define a covariant derivative Dµ which acts on matrix entries,

not on u(N) elements, by

Xij 7→ DµX
ij = ∂µ + i gAijµX

ij ; Dµ(Xij) = (DµX
ij) , (5.33)

using the notation in which (Xij) denotes the matrix whose (ij)th entry is Xij . Dµ is a

derivation if it acts on a product whose colour indices are contracted:

Dµ(XY )ij = (∂µ + igAijµ )XikY kj = ∂µ(XikY kj) + ig(Aikµ +Akjµ )XikY kj (5.34)

= DµX
ikY kj +XikDµY

kj , (5.35)

and so we can partially integrate Dµ in any integrand with contracted colour indices.

Similarly, if we define

mij
I ≡ m

i
I −m

j
I , m2

ij =
D−d∑
I=1

(mij
I )2 , (5.36)

then we have

[MI , (X
ij)] =

(
mijXij

)
, [MI , [MI , (X

ij)]] =
(
m2
ijX

ij
)
. (5.37)

The factors of 1√
2

in Eq. (5.29) and Eq. (5.30) are necessary so the fields are canonically

normalized in the Lagrangian: for example, the term quadratic in Φ in Eq. (5.14) is given

by

LΦ2 = −1

2
φijI DµD

µφji − 1

2
φijI m

2
ijφ

ji
I (5.38)

= −
N∑
i=1

1

2
φiiI ∂µ∂

µφiiI −
N∑

1≤i<j

(
(φijI )∗DµD

µφij +m2
ij |φ

ij
I |

2
)
, (5.39)

which is the correctly normalized Lagrangian for N massless real scalar fields φii and
1
2N(N − 1) complex scalars φij , i < j, with mass |mij |. In terms of these fields, the
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Lagrangian is the sum of the following terms:

LQQ =
1

2
Qµ,ijDνD

νQjiµ + i gQµ,ijF jiµρQ
ρ,ji +

1

2
m2
ijQ

µ,ijQjiµ (5.40)

Lφφ = −1

2
φijI DνD

νφjiI −
1

2
m2
ijφ

ij
I φ

ji
I (5.41)

Lcc = −cijDµD
µcji −m2

ijc
ijcji (5.42)

LQ3 = − i gγ√
2
DµQ

µ,ijQjkν Q
ν,ki − i g√

2
DµQ

ij
ν

(
Qµ,jkQν,ki −Qν,jkQµ,ki

)
(5.43)

LQφ2 =
i gγ√

2
DµQ

µ,ijφjkI φ
ki
I +

i g√
2
Dµφ

ij
I

(
Qµ,jkφkiI − φ

jk
I Q

µ,ki
)

(5.44)

LccQ =
ig√

2
Dµc

ij
(
Qµ,jkcki − cjkQµ,ki

)
− i γg√

2
cij
(
Qjkµ D

µcki +DµcjkQkiµ
)

(5.45)

LQ2φ = − gγ√
2
mij
I φ

ijQjkµ Q
µ,ki − g√

2
mij
I Q

ij
µ

(
φjkI Q

µ,ki −Qµ,jkφkiI
)

(5.46)

Lφ3 =
γg√

2
mij
I φ

ij
I φ

jk
J φ

ki
J +

g√
2
mij
I φ

ij
J

(
φjkI φ

ki
J − φ

jk
J φ

ki
I

)
(5.47)

Lφcc =
g√
2
mij
I c

ij
(
φjkI c

jk − cjkφkiI
)
− γg√

2
cij
(
φjkI m

ki
I c

ki +mjk
I c

jkφkiI
)

(5.48)

LQ4 =
g2

4
(ηρµησν + (γ2 − 1)ηρνησν)QijµQ

jk
ν Q

k`
ρ Q

`i
σ (5.49)

LQ2φ2 = −g
2

2
φijI Q

µ,jkφk`I Q
`i
µ +

1− γ2

2
g2φijI φ

jk
I Q

µ,k`Q`iµ (5.50)

Lφ4 =
g2

4
φijI φ

jk
J φ

k`
I φ

`i
J −

1− γ2

4
g2φijI φ

jk
I φ

k`
J φ

`i
J (5.51)

LQ2cc =
γg2

2
cij
(
Qjkµ (Qµ,k`c`i − ck`Qµ,`i) + (Qµ,jkck` − ckjQµ,k`)Q`iµ

)
(5.52)

Lφ2cc = −γg
2

2
cij
(
φjkI (φk`I c

`i − ck`φ`iI ) + (φjkI c
k` − cjkφk`I )φ`iI

)
. (5.53)

All u(N) indices i, j, k, ` are to be summed over. F jiµρ in equation Eq. (5.40) is given by

F jiµρ = F jµρ − F iµρ F iµρ = ∂µA
i
ν − ∂νAiµ . (5.54)

The quadratic part of this Lagrangian is exactly the same as 1
2N(N − 1) copies of the

quadratic part of the Lagrangian for charged fields φij , Qijµ cij , cij , with mass |mij | min-

imally coupled to a U(1) background gauge field Aijµ (x), plus N copies of a set of real,

massless fields φii, Qiiµ c
ii, cii. The gauge condition Eq. (5.27) has become

DµQijµ + i γg Qikµ Q
µ,kj − imij

I φ
ij
I − i γg φikI φ

ki
I , (5.55)

where k is summed over but there is no summation over i or j.
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5.3 A constant background field

Now let’s specify the form of the background gauge field; let’s choose it so for each i, F iµν

is a U(1) magnetic field in the 1–2 plane. One such gauge field is given by

Aiµ(x) = x1ηµ2B
i F iµν = (ηµ1ην2 − ην1ηµ2)Bi = AµνBi , (5.56)

where we’ve defined the antisymmetric tensor

Aµν = ηµ1ην2 − ην1ηµ2 . (5.57)

The classical action for this background field is given by

Lbf = −
N∑
i=1

(Bi)2 = − 1

N

( N∑
i=1

Bi
)2
− 1

N

N∑
1≤i<j

(Bij)2 ; Bij ≡ Bi −Bj . (5.58)

The tree level propagators for the charged component fields φij , Qijµ cij , cij will be the

same as the propagators for charged fields of the same type in a U(1) background gauge

field Aijµ (x) = x1ηµ2B
ij . These can be written down exactly in Bij ; the expressions are

given in the following section.

5.4 Propagators in a constant background field

5.4.1 The scalar propagator

One of the components φij of the scalar field therefore behaves as a complex scalar charged

under the background field

Aijµ (x) = x1ηµ2B
ij . (5.59)

The propagator for scalar fields in this background is calculated in appendix B of [16]. G

is given in terms of a heat kernel by

Gij(x, y) =

∫ ∞
0

dtKij(x, y; t) (5.60)

Kij(x, y; t) =
e−

i
2
gBij(x1+y1)(x2−y2)−tm2

ij

(4πt)
d
2

gBijt

sinh(gBijt)

× exp
[1

4
(xµ − yµ)β(F ij, t)µν(xν − yν)

]
(5.61)

where

β(F ij, t)µν =
1

t
ηµν‖ +

gBij

tanh(gBijt)
ηµν⊥ . (5.62)
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The tensors ηµν‖ and ηµν⊥ project components parallel and perpendicular, respectively, to

the background field:

ηµν‖ = AµρAρν = ηµ1δν2 + ηµ2δν1 ηµν⊥ = ηµν − ηµν‖ . (5.63)

This Gij(x, y) satisfies ( D

Dxµ

D

Dxµ
+m2

ij

)
Gij(x, y) = −i δd(x− y) , (5.64)

where the covariant derivative implicitly acts on a propagator with colour indices (ij) as

D

Dxµ
Gij(x, y) ≡

( ∂

∂xµ
+ i gAijµ (x)

)
Gij(x, y) (5.65)

D

Dyµ
Gij(x, y) ≡

( ∂

∂yµ
− i gAijµ (y)

)
Gij(x, y) (5.66)

(these are the only combinations that occur in Feynman diagrams). For a real scalar field,

or a field charged under a background Aijµ which vanishes, we have the propagator

G0(x, y) = lim
Bij→0

Gij(x, y) =

∫ ∞
0

dt

(4πt)
d
2

e−tm
2
ij exp

[(xµ − yµ)(xµ − yµ)

4t

]
. (5.67)

5.4.2 Gluon propagator

The ghosts have the same propagator as the scalars, but the propagator for the gluons is

more complicated because of the background field strength F jiµρ appearing in Eq. (5.40).

The propagator needs to satisfy(
ηµρ

( D

Dxσ

D

Dxσ
+m2

ij

)
+ 2igF ijµρ

)
Gij,ρν(x, y) = iδνµδ

d(x− y) . (5.68)

To diagonalize it, we can introduce idempotent projection operators P+ P−, P⊥ via

(P±)ρ
σ =

η
‖
ρα ± iAρα

2
ηασ (P⊥)ρ

σ = η⊥ραη
ασ (5.69)

and then we have

(P+ + P− + P⊥)µν = ηµν (P+ − P−)µν = iAµν . (5.70)

so we can rewrite Eq. (5.68) as(( D

Dxσ

D

Dxσ
+m2

ij

)
η⊥µρ +

( D

Dxσ

D

Dxσ
+m2

ij + 2gBij
)
P+
µρ (5.71)

+
( D

Dxσ

D

Dxσ
+m2

ij − 2gBij
)
P−µρ

)
Gij,ρν(x, y) = iδνµδ

d(x− y) .

There are three terms here: one is like the equation for the propagator of a charged scalar

with mass m2
ij , and the other two are the same except the mass term has been altered by
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m2
ij 7→ m2

ij ± 2gBij . Let Gij±(x, y) be the scalar propagators satisfying

−
( D

Dxµ

D

Dxµ
+m2

ij ± 2gBij
)
Gij±(x, y) = iδd(x− y) . (5.72)

If we let Gij,σα be given by

Gij,σα(x, y) = −ησα⊥ Gij(x, y)− P σα+ Gij+(x, y)− P σα− Gij−(x, y), (5.73)

then by the orthogonality of the projection operators, we have(
ηµρ

( D

Dxσ

D

Dxσ
+m2

ij

)
+ 2igF ijµρ

)
Gij,ρν(x, y) = i (P+)µ

νδd(x− y) + i (P−)µ
νδd(x− y)

+ i (η⊥)µ
νδd(x− y) (5.74)

= i δνµ δ
d(x− y). (5.75)

Noting that m2
ij enters the propagator only via a factor of e−tm

2
ij in the heat kernel

Eq. (5.61), so we see that the gluon propagator is therefore given by

Gijµν(x, y) = −
∫ ∞

0
dt (η⊥µν + P+

µνe2gBijt + P−µνe−2gBijt)Kij(x, y; t) (5.76)

= −
∫ ∞

0
dt
(
η⊥µν + η‖µν cosh(2gBijt) + iAµν sinh(2gBijt)

)
Kij(x, y; t). (5.77)

We can write this in the compact form

Gijµν(x, y) = −
∫ ∞

0
dt exp(2igF ijt)µν Kij(x, y; t) , (5.78)

which has the benefit of making it easy to contract the Lorentz indices of multiple gluon

propagators:

Gijµσ(x, y)Gk`,σν(z, w) =

∫ ∞
0

dti exp(2ig(F ijt1 + F k`t2))µν Kij(x, y; t1)Kk`(z, w; t2) .

(5.79)

The propagator for the diagonal component fields Qiiµ or for charged fields Qijµ whose

background field Aijµ vanishes is

Gµν0 (x, y) = −ηµνG0(x, y) . (5.80)

The scalar and vector propagators in Eq. (5.60) and Eq. (5.78) have the symmetries

Gij(x, y) = Gji(y, x) Gijµν(x, y) = Gjiνµ(y, x) . (5.81)
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5.5 Summary of Feynman diagrams

In this section we will list all of the two-loop 1-particle-irreducible planar Feynman dia-

grams we get from the vertices in section 5.2. To compare easily with the string theory

results, we will order the results by the colour indices, i.e., we will list all of the diagrams

whose propagators have the three colour indices i, j and k, say; we expect that all of these

come from the field theory limit of the worldsheet whose boundaries are on the ith, jth

and kth D-branes.

Then we should sum the following diagrams, weighted appropriately, over i, j and k,

where we write

Bjk = B1 Bki = B2 Bij = B3 m2
jk = m2

1 m2
ki = m2

2 m2
ij = m2

3 . (5.82)

denotes the gluon propagator, is the Faddeev-Popov ghost propagator,

and is the scalar field propagator.

=
g2

(4π)d

∫ ∞
0

∏3
i=1 dti e−tim

2
i

∆
d/2−1
0 ∆F

{
− 3− γ2

2

(d− 2)(d− 3)

∆0
(t1 + t2 + t3)

− 2(d− 2)

∆F

(
sinh(gF1t1)

gF1

(1− γ2

2
cosh(gB2t2 − gB3t3)

+ cosh(2gB1t1 − gB2t2 − gB3t3) + cyclic permutations
))

− 2(d− 2)

∆0

((
t1 +

1− γ2

2
t2

)
cosh(2B2t2 − 2B3t3) + cyclic permutations

)

− 2

∆F

(
sinh(gB1t1)

gB1

(
cosh(2gB1t1 − gB2t2 − gB3t3)

+
1− γ2

2
cosh(3gB3t3 − 2gB1t1 − gB2t2)

)
+ cyclic permutations

)}
(5.83)

=
1 + γ2

2

g2

(4π)d

∫ ∞
0

∏3
i=1 dti e−tim

2
i

∆
d/2−1
0 ∆F

{ 2

∆F

sinh(F3t3)

F3
cosh(2F3t3 − F1t1 − F2t2)

+
d− 2

∆0
t3 + cyclic permutations

}
(5.84)

= −Ns
g2

(4π)d

∫ ∞
0

∏3
i=1 dti e−tim

2
i

∆
d/2−1
0 ∆F

{
d− 2

∆0

(
t3 +

1− γ2

4
(t1 + t2)

)

+
2

∆F

(
sinh(gB3t3)

gB3
cosh(2gB3t3 − gB1t1 − gB2t2)
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+
1− γ2

4

(sinh(gB1t1)

gB1
cosh(gB3t3 − gB2t2) (5.85)

+
sinh(gB2t2)

gB2
cosh(gB3t3 − gB1t1)

))
+ cyclic permutations

}
.

= i
g2

(4π)d

∫ ∞
0

∏3
i=1 dti e−tim

2
i

∆
d/2−1
0 ∆F

{(1 + γ2

2
m2

3 −m2
1 −m2

2

)
(5.86)

×
(
d− 2 + 2 cosh(2gB1t1 − 2gB2t2)

)
+ cyclic permutations

}
.

= −i
g2

(4π)d

∫ ∞
0

∏3
i=1 dti e−tim

2
i

∆
d/2−1
0 ∆F

(m2
3 −m2

1 −m2
2) + cyclic permutations .

(5.87)

= i (Ns − 1)
3− γ2

2
(m2

1 +m2
2 +m2

3)
g2

(4π)d

∫ ∞
0

∏3
i=1 dti e−tim

2
i

∆
d/2−1
0 ∆F

. (5.88)

= i
g2

(4π)d

∫ ∞
0

[ 2∏
i=1

dti e−tim
2
i gBi

t
d/2−1
i sinh(gBiti)

]
(5.89)

× 1

2

{
d− 2 + 2 cosh(2gB1t1 + 2gB2t2)

+
γ2 − 1

2

(
d− 2 + 2 cosh(2gB1t1 − 2gB2t2)

+
(
d− 2 + 2 cosh(2gB1t1)

)(
d− 2 + 2 cosh(2gB2t2)

))}
.

+ cyclic permutations ,

= i
g2

(4π)d

∫ ∞
0

[ 2∏
i=1

dti e−tim
2
i gBi

t
d/2−1
i sinh(gBiti)

]γ2 − 1

2

(
d− 2 + 2 cosh(2gB2t2)

)
NS

+ cyclic permutations, (5.90)

= i
g2

(4π)d

∫ ∞
0

[ 2∏
i=1

dti e−tim
2
i gBi

t
d/2−1
i sinh(gBiti)

](
1 +

γ2 − 1

2
(1 +NS)

)
NS

+ cyclic permutations. (5.91)

Note that the gauge choice γ2 = 1 gives many of these diagrams a much simpler form, for

example, the second and sixth lines of Eq. (5.83), the third and fourth lines of Eq. (5.85)
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and the entirety of the Eq. (5.90), the diagram with a quartic gluon-scalar vertex, vanish

in this gauge. In fact, the last example is a special case of the fact that both propagators in

the diagrams with quartic vertices must have the same polarization precisely when γ2 = 1,

which corresponds to both propagators coming from the same CFT in string theory.

5.5.1 Feynman diagrams

All of the diagrams are evaluated in position space. To compute amplitudes perturbatively

we use the path integral. As usual, we split the Lagrangian into a quadratic part and an

‘interaction’ term

L = LQQ + Lφφ + Lcc + Lint

[
Qijµ , c

ij , cij , φijI
]

(5.92)

and write the partition function in the presence of currents as

Z[J ijµ , η
ij , ηij , J ijI ] =

∫ [
DQijµ Dcij Dcij Dφ

ij
I

]
exp

(
i

∫
ddx

(
L
[
Qijµ , c

ij , cij , φijI
]

+ J ijµ Q
µ,ji + cjiηij + ηijcji + J ijI φ

ji
I

))
(5.93)

= exp
(

iLint

[1

i

δ

δJµ,ji
, i

δ

δηji
,
1

i

δ

δηji
,
1

i

δ

δJ jiI

])
Z0[J ijµ , η

ij , ηij , J ijI ] (5.94)

where

Z0[J ijµ , η
ij , ηij , J ijI ] =

∫ [
DQijµ Dcij Dcij Dφ

ij
I

]
exp

(
i

∫
ddx

(
LQQ + Lφφ + Lcc

+ J ijµ Q
µ,ji + cjiηij + ηijcji + J ijI φ

ji
I

))
(5.95)

We can ‘complete the square’ on the scalars using the propagator which satisfies Eq. (5.64)∫
ddx

(
Lφφ + J jiI φ

ij
I

)
=

∫
ddx

(
− 1

2
φjiI (DµD

µ +m2
ij)φ

ij
I + J jiI φ

ij
I

)
(5.96)

=

∫
ddx

(
− 1

2
φ̃jiI (DµD

µ +m2
ij)φ̃

ij
I

+
i

2
J jiI (x)

∫
ddy Gij(x, y)J ijI (y)

)
(5.97)

where we have shifted the field to account for the current:

φ̃ijI (x) ≡ φijI (x)− i

∫
ddy Gij(x, y)J ijI (y) . (5.98)

Carrying out similar manipulations on the ghost and gluon fields, we arrive at

Z0[J ijµ , η
ij , ηij , J ijI ] = Z0[0, 0, 0, 0] exp

(
−
∫

ddx ddy
[1

2
J jiµ (x)Gµν,ij(x, y)J ijν (y)

+ ηji(x)Gij(x, y)ηij(y) +
1

2
J jiI (x)Gij(x, y)J ijI (y)

])
. (5.99)
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This expression can be plugged into Eq. (5.94) with all the currents set to 0 to give an

expression for the vacuum partition function:

Z[0, 0, 0, 0] = Z0[0, 0, 0, 0] exp
(

iLint

[1

i

δ

δJµ,ji
, i

δ

δηji
,
1

i

δ

δηji
,
1

i

δ

δJ jiI

])
× exp

(
−
∫

ddx ddy
[1

2
J jiµ (x)Gµν,ij(x, y)J ijν (y) (5.100)

+ ηji(x)Gij(x, y)ηij(y) +
1

2
J jiI (x)Gij(x, y)J ijI (y)

])∣∣∣∣
Jµ=η=η=JI=0

.

The colour indices inside the exponential are summed over; this means that charged com-

ponents of the gluon and scalars are counted twice, so they enter Eq. (5.100) with the

correct normalization.

We shall calculate three Feynman diagrams explicitly and state the results of the

remaining ones, since they are calculated in the same way.

A Feynman diagram with Dµ vertices

Let us begin by calculating the diagram in Eq. (5.84). The relevant interaction vertex is

LccQ in Eq. (5.45), which we can integrate by parts and rewrite as

LccQ =
i g√

2

(
δjkδ`mδni − δjmδnkδ`i

)
Dµc

ijQµ,k`cmn

− i g γ√
2

(
δjkδ`mδni + δjmδnkδ`i

)
cijQµ,k`Dµc

mn (5.101)

so

LccQ
[1

i

δ

δJµ,ji
, i

δ

δηji
,
1

i

δ

δηji

]
=

g√
2

(
δjkδ`mδni − δi`δjmδkn

)
Dµ

δ

δηji
δ

δJ `kµ

δ

δηnm

− g γ√
2

(
δjkδ`mδni + δi`δjmδkn

) δ

δηji
δ

δJ `kµ
Dµ

δ

δηnm
. (5.102)

Inserting two copies of this vertex according to Eq. (5.100), we obtain

= −g
2

4
δanδbmδdkδc`δfiδej

∫
ddx ddy Gµν,k`(x, y) (5.103)

×
((
δbcδdeδfa − δadδbeδcf

)(
δjkδ`mδni − δi`δjmδkn

) D

Dxµ
Gij(x, y)

D

Dyν
Gmn(x, y)

− γ
(
δbcδdeδfa − δadδbeδcf

)(
δjkδ`mδni + δi`δjmδkn

)
Gij(x, y)

D

Dxµ
D

Dyν
Gmn(x, y)

− γ
(
δbcδdeδfa + δadδbeδcf

)(
δjkδ`mδni − δi`δjmδkn

) D

Dxµ
D

Dyν
Gij(x, y)Gmn(x, y)

+ γ2
(
δbcδdeδfa + δadδbeδcf

)(
δjkδ`mδni + δi`δjmδkn

) D

Dyν
Gij(x, y)

D

Dxµ
Gmn(x, y)

)
.
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(a) (b)

Figure 5.1: Possible double-line graph topologies with two cubic vertices.

The third and fourth lines (the ones involving double derivatives) vanish when we contract

the colour indices:

δanδbmδdkδc`δfiδej
(
δbcδdeδfa ± δadδbeδcf

)(
δjkδ`mδni ∓ δi`δjmδkn

)
= 0 . (5.104)

The second and fifth lines contain contributions from the planar (Fig. 5.1a) and non-

planar (Fig. 5.1b) diagrams, where in Fig. 5.1 we have used double-line notation to indi-

cate the colour structure. The non-planar diagram arises when all colour indices are con-

tracted with each other, i.e. from terms containing δanδniδifδfcδc`δ`mδmbδbeδejδjkδkdδda

or δanδnkδkdδdeδejδjmδmbδbcδc`δ`iδifδfa. We are not interested in these diagrams because

every propagator is uncharged with respect to the background field, and therefore these di-

agrams don’t contribute to the effective action. We don’t expect to obtain these diagrams

from string theory since our calculation begins with a planar worldsheet.

The planar diagram is given by

= −g
2

4

(
δjkδ`mδni + δi`δjmδkn

) ∫
ddx ddy Gµν,k`(x, y) (5.105)

×
(

D

Dxµ
Gij(x, y)

D

Dyν
Gmn(x, y) + γ2 D

Dyν
Gij(x, y)

D

Dxµ
Gmn(x, y)

)
.

This can be written as two copies of the same term differing only in the order of the colour

indices:

= −g2 1 + γ2

4

∫
ddx ddy

D

Dxµ
Gij(x, y)

D

Dyν
Gjk(x, y)Gµν,ki(x, y)

+
(
(ijk)↔ (kji)

)
. (5.106)

Inserting the expressions for the scalar and gluon propagators in Eq. (5.60) and Eq. (5.78),

we obtain

= g2 1 + γ2

4

∫ ∞
0

dti exp(2igF kit3)µν

×
∫

ddx ddy
D

Dxµ
Kij(x, y; t1)

D

Dyν
Kjk(x, y; t2)Kki(x, y; t3) (5.107)

+
(
(ijk)↔ (kji)

)
.
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We need to carry out the integral over x and y in the second line. First of all, we can

calculate

D

Dxµ
Kij(x, y; t1) =

β(F ij, t1)µρ + iF ijµρ
2

(xρ − yρ)Kij(x, y; t1) (5.108)

D

Dyµ
Kjk(x, y; t2) = −β(F jk, t2)νσ − iF jkνσ

2
(xσ − yσ)Kjk(x, y; t2) (5.109)

where β(F, t) is defined in Eq. (5.62). We then have

D

Dxµ
K1(x, y; t1)

D

Dyν
K2(x, y; t2)K3(x, y; t3) (5.110)

= −
β(F 1, t1)µρ + iF 1

µρ

2

β(F 2, t2)νσ − iF 2
νσ

2
(xρ − yρ)(xσ − yσ)

3∏
i=1

Ki(x, y; ti) ,

where we’ve simplified the notation for Fij , Bij and m2
ij by writing 1, 2, 3 in place of the

colour indices (ij), (jk), (ki), respectively. Now, the complex phase in
∏3
i=1Ki(x, y; ti)

vanishes due to the fact that
∑3

i=1Bi = 0, and we have

3∏
i=1

KAi(x, y; ti) = e
1
4

(xµ−yµ)B(F i, ti)µν(xν−yν)
3∏
i=1

e−tim
2
i

(4πti)
d
2

gBiti
sinh(gBiti)

. (5.111)

where B(F i, ti)µν =
∑3

i=1 β(F i, ti)µν . Note that the integrand is a function of z = x − y
so we can replace the integral over x with an integral over z while the integral over y will

gives a factor corresponding to the volume of spacetime, which we won’t write explicitly.

We get

∫
ddx ddy (xρ − yρ)(xσ − yσ)

3∏
i=1

Ki(x, y; ti)

=

3∏
i=1

e−tim
2
i

(4πti)
d
2

gBiti
sinh(gBiti)

∫
ddz zρzσe

1
4
zµB(F i, ti)µνz

ν
. (5.112)

This is a moment of a Gaussian integral so it can be written as∫
ddz zρzσe

1
4
zµB(F i, ti)µνz

ν
= −2(B(F i, ti)

−1)ρσ
∫
ddz e

1
4
zµB(F i, ti)µνz

ν
. (5.113)

To make is easier to contract the Lorentz indices, it is a good idea to write B as

B(F i, ti)µν = ∆0

3∏
i=1

1

ti
η⊥µν + ∆F

3∏
i=1

gBi
sinh(gBiti)

η‖µν (5.114)

where ∆0 and ∆F are defined in Eq. (4.67) and Eq. (4.65) respectively, and η⊥µν and η
‖
µν

are defined in Eq. (5.63). Eq. (5.114) holds because
∑3

i=1Bi = 0. Note that B(F i, ti)µν is
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diagonal so its inverse is simply

(B(F i, ti)
−1)ρσ = ∆−1

0

3∏
i=1

ti η
ρσ
⊥ + ∆−1

F

3∏
i=1

sinh(gBiti)

gBi
ηρσ‖ . (5.115)

Noting that we can write

(β(F 1, t1)µρ + iF 1
µρ) =

η⊥µρ
t1

+
gB1

sinh(gB1t1)

(
η‖µρ cosh(gB1t1) + iAµρ sinh(gB1t1)

)
(5.116)

(β(F 2, t2)νσ − iF 2
νσ) =

η⊥νσ
t2

+
gB2

sinh(gB2t2)

(
η‖νσ cosh(gB2t2)− iAνσ sinh(gB2t2)

)
(5.117)

where Aµν is defined in Eq. (5.57), we can use the tensor contractions

ηρσ⊥ η
⊥
µρ η

⊥
νσ = η⊥µν ηρσ‖ η

‖
µρ η

‖
νσ = η‖µν ηρσ‖ Aµρ η

‖
νσ = Aµν

ηρσ‖ η
‖
µρAνσ = −Aµν ηρσ‖ AµρAνσ = η‖µν (5.118)

to get

(B(F i, ti)
−1)ρσ (β(F 1, t1)µρ + iF 1

µρ) (β(F 2, t2)νσ − iF 2
νσ) (5.119)

= ∆−1
0 t3 η

⊥
µν + ∆−1

F

sinh(gB3t3)

gB3

(
η‖µν cosh(gB1t1+gB2t2) + iAµν sinh(gB1t1+gB2t2)

)
.

This can be written as

(B(F i, ti)
−1)ρσ(β(F 1, t1)µρ + iF 1

µρ) (β(F 2, t2)νσ − iF 2
νσ)

= ∆−1
µσ S(F3, t3)σρ exp(i (gF1t1 + gF2t2))ρν (5.120)

where

∆−1
µσ = ∆−1

0 η⊥µσ + ∆−1
F η‖µρ S(F3, t3)σρ = t3 η

σρ
⊥ +

sinh(gB3t3)

gB3
ησρ‖ . (5.121)

Finally, we use a Wick rotation to evaluate∫
ddz e

1
4
zµB(F i,ti)µνz

ν
= −i (4π)

d
2 (detB)−

1
2 (5.122)

= −i (4π)
d
2 ∆

1− d
2

0 ∆−1
F

3∏
i=1

sinh(gBiti)

gBiti
t
d/2
i , (5.123)

where we’ve used the expression for B in Eq. (5.114). Putting Eq. (5.120) and Eq. (5.123)

together, we arrive at∫
ddx ddy

D

Dxµ
K1(x, y; t1)

D

Dyν
K2(x, y; t2)K3(x, y; t3) (5.124)
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= −i
1

(4π)d

∏3
i=1 e−tim

2
i

∆
d/2−1
0 ∆F

∆−1
µσ S(F3, t3)σρ exp(i(gF1t1 + gF2t2))ρν ,

which is also useful for evaluating the Feynman diagrams in Eq. (5.83) and Eq. (5.85).

Plugging Eq. (5.124) into Eq. (5.107) and contracting the Lorentz indices and reinstating

the colour indices, we get

= −i
g2

(4π)d
1 + γ2

4

∫ ∞
0

dti
e−t1m

2
ij−t2m2

jk−t3m
2
ki

∆
d/2−1
0 ∆F

[
d− 2

∆0
t3 (5.125)

+
2

∆F

sinh(gBkit3)

gBki
cosh(2gBkit3 − gBijt1 − gBjkt2)

]
+
(
(ijk)↔ (kji)

)
.

Now, swapping
(
(ijk)↔ (kji)

)
is equivalent to rewriting

Bki → −Bki Bij ↔ −Bjk m2
ki → m2

ki m2
ij ↔ m2

jk (5.126)

which is a symmetry of the integral in Eq. (5.125) (if we rename the integration variables

t1 ↔ t2). Therefore1

= −i
g2

(4π)d
1 + γ2

2

∫ ∞
0

dti
e−t1m

2
ij−t2m2

jk−t3m
2
ki

∆
d/2−1
0 ∆F

[
d− 2

∆0
t3 (5.127)

+
2

∆F

sinh(gBkit3)

gBki
cosh(2gBkit3 − gBijt1 − gBjkt2)

]
.

To get the full contribution to the QFT from diagrams of this topology, we need to sum

over the different possible colour structures, which is equivalent to summing over cyclic

permutations of the Bi’s.

A Feynman diagram with mij vertices

The Feynman diagrams with the same topology as the one in Eq. (5.84) but with an

odd number of scalar propagators instead of an odd number of gluon propagators can

be computed similarly, but they are simpler since the vertices do not involve covariant

derivatives but are proportional to the scalar VEVs mij . For example, let us calculate the

Feynman diagram in Eq. (5.86).

The relevant vertex is in Eq. (5.46); if we relabel the indices using mkj
I +mji

I +mik
I = 0,

we have

LQ2φ =
g√
2

(
(1 + γ)mkj

I − (1− γ)mik
I

)
φijQjkµ Q

µ,ki , (5.128)

Using two copies of

LΦQQ

[1
i

δ

δJ
,
1

i

δ

δJµ
]

= i
g√
2

(
(1− γ)mik

I − (1 + γ)mkj
I

) δ

δJ jiI

δ

δJkj,µ
δ

δJ ikµ
, (5.129)

1
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according to Eq. (5.100) and contracting the colour indices, we arrive at

=
g2

4

(
(1− γ)mkj

I − (1 + γ)mik
I

)(
(1− γ)mik

I − (1 + γ)mkj
I

)
×
∫

ddx ddy Gij(x, y)Gjkµν(x, y)Gµν,ki(x, y) , (5.130)

plus a non-planar part, where we’ve used mjk
I = −mkj

I and mki
I = −mik

I . Inserting the

identity

(
(1− γ)a− (1 + γ)b

)(
(1− γ)b− (1 + γ)a

)
= (1 + γ2)(a+ b)2 − 2(a2 + b2) (5.131)

with mjk
I +mki

I = −mij
I and using Eq. (5.36) to rewrite the expression in terms of the bare

squared masses of the fields, and then inserting the expressions for the scalar and gluon

propagators in Eq. (5.60) and Eq. (5.78), we obtain

=
g2

4

(
(1 + γ2)m2

ij − 2(m2
jk +m2

ki)
) ∫

dti exp(2igFjkt1)µν exp(2igFkit2)µν

×
∫

ddx ddyKij(x, y; t3)Kjk(x, y; t1)Kki(x, y; t2). (5.132)

Rewriting the second line using Eq. (5.111) and carrying out the integration over x and y

with Eq. (5.123), and writing

exp(2igFjkt1)µν exp(2igFkit2)µν = d− 2 + 2 cosh(2gBjkt1 − 2gBkit2) , (5.133)

(where the relative sign between Bjk and Bki comes from transposing one of the Hermitian

matrices before contracting the Lorentz indices), we end up with

= − i

(4π)d
g2

4

(
(1 + γ2)m2

ij − 2(m2
jk +m2

ki)
)

(5.134)

×
∫ ∞

0
dti

e−t1m
2
jk−t2m

2
ki−t3m

2
ij

∆
d
2
−1

0 ∆F

(
d− 2 + 2 cosh(2gBjkt1 − 2gBkit2)

)
.

This diagram corresponds only to a particular colour structure; to find the full contri-

bution to the QFT coming from diagrams with this field content we need to sum over

all cyclic permutations of the Bi’s and multiply by a factor of 2 from counting the two

possible orientations of the propagators. The diagrams in Eq. (5.87) and Eq. (5.88) can

be calculated similarly to this one.

A Feynman diagram with a quartic vertex

Finally, we will calculate a diagram with a quartic vertex. Let us calculate the diagram

in Eq. (5.91). The relevant interaction term in the Lagrangian comes from Eq. (5.51) and
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can be rewritten as

Lφ4 =
g2

4
(δKIδLJ + (γ2 − 1)δILδJK)φijKφ

jk
L φ

k`
I φ

`i
J (5.135)

so if we insert

Lφ4
[1

i

δ

δJ jiI

]
=
g2

4
(δKIδLJ + (γ2 − 1)δILδJK)

δ

δJ jiK

δ

δJkjL

δ

δJ `kI

δ

δJ i`J
(5.136)

in Eq. (5.100), we obtain the diagram

= i
g2

4
(δKIδLJ + (γ2 − 1)δILδJK)

∫
ddx

(
G`i(x, x)Gjk(x, x)δikδIJδLK

+Gk`(x, x)G`i(x, x)δ`jδLIδJK
)
, (5.137)

plus a non-planar term. Relabelling the indices as (jk`) → (abc) in the first term and

(k`i) → (abc) in the second term and contracting the flavour indices, then inserting the

expression for the scalar propagator in Eq. (5.60) and dropping, as usual, the factor of the

volume of spacetime coming from the integral over x, we get

= i
g2

2

(
1 +

γ2 − 1

2
(1 +Ns)

)
Ns

× 1

(4π)d

∫ ∞
0

2∏
i=1

[ dti

t
d/2−1
i

gBie
−tim2

i

sinh(gBiti)

]
(5.138)

where (B1,m
2
1) ≡ (Bab,m2

ab) and (B2,m
2
2) ≡ (Bbc,m2

bc). The diagrams in Eq. (5.89) and

Eq. (5.90) can be calculated similarly.

5.6 Comparison between QFT and string theory

It is clear by inspecting equations Eq. (4.91) to Eq. (4.104) for the QFT limit of the string

amplitude calculated in the symmetric pi parametrization and equations Eq. (4.129) to

Eq. (4.132) for the QFT limit of the remaining terms in the string amplitude that we

obtain all of the 1PI two-loop QFT Feynman diagrams Eq. (5.83) to Eq. (5.91) in the gauge

γ2 = 1, as well as some unaccounted-for terms (to precise the second line of Eq. (4.129))

which have the expected form of 1PR diagrams completely factorized into two independent

loop integrals.

The terms in the pi QFT limit in Eq. (4.91) to Eq. (4.104) clearly correspond to the

Feynman diagrams with the topology of Fig. 4.4a; we can identify each term in Eq. (4.91)

with a particular Feynman diagram. f111
⊥ in Eq. (4.96) matches the first line of Eq. (5.83)

in which all three propagators are polarized perpendicular to the magnetic field; f001
‖ f110

⊥
plus its cyclic permutations matches the third line of Eq. (5.83) in which one propagator

is polarized parallel and two are polarized perpendicular to the magnetic fields, and so on.

The situation for the remainder of the QFT limit of the string amplitude in Eq. (4.129)
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is not as obvious because there are two possible Feynman diagram topologies for the various

terms to map onto. In fact, we see that the three terms f11
‖ , f11

⊥ and f11
scal given in the first

line of Eq. (4.133) correspond to the Feynman diagrams with the topology of Fig. 4.4c in

the gauge γ2 = 1; f11
‖ + f11

⊥ are mapped to Eq. (5.89) while f11
scal gives the diagram with two

scalar propagators in Eq. (5.91). The diagram with one scalar propagator and one gluon

propagator in Eq. (5.90) vanishes for γ2 = 1 so we should be unsurprised that there is

nothing corresponding to it on the string theory side. There are several compelling reasons

to believe this: firstly that the QFT Feynman diagram in Eq. (5.89) contains the structure

2 cosh(2gB1t1 + 2gB2t2) and the terms in the first line of Eq. (4.133) are the only place

on the string theory side where such an object arises. Secondly, this is the only way on

the string theory side that we could explain the fact that both propagators in Eq. (5.89)

and Eq. (5.91) have to have the same polarization for γ2 = 1.

The remaining terms in Eq. (4.129) coming from the product
(
f10
‖ +f10

⊥ +f10
scal+f10

gh

)(
f01
‖ +

f01
⊥ + f01

scal + f01
gh

)
have the wrong structure to match any of our 1PI diagrams for γ2 = 1

because they have only two propagators, each of which can be polarized independently.

In the factorized form of the second line of Eq. (4.133), it is clear that this term can be

written it in terms of a trace over the propagators:

− g2
2∏
i=1

[
1

(4π)d/2

∫ ∞
0

dti

t
d/2−1
i

e−tim
2
i gBi

sinh(gBiti)

(
f i‖ + f i⊥ + f iscal + f igh

)]
(5.139)

= −g2
2∏
i=1

[
ηµνGiµν(x, x) +NsG

i(x, x)− 2Gi(x, x)

]
,

where the vector and scalar propagators are given in Eq. (5.78) and Eq. (5.60). It seems like

these terms should correspond to 1PR Feynman diagrams with the topology of Fig. 4.4b.

We can characterize the 1PI QFT diagrams according to the origins of the terms in the

infinite products in the string theory amplitude. All of the terms on the string theory side

which correspond to 1PI QFT diagrams originate from the square root of the muliplier

of a single Schottky group element in the expansion of the infinite products in Eq. (4.9).

The terms in Eq. (4.91) come from k1
1
2 , k2

1
2 or k(S−1

1 S2)
1
2 and the terms in the first

line of Eq. (4.133) come from k(S1S2)
1
2 . These correspond to only one single term being

taken from the infinite products in Eq. (4.9). On the other hand, the terms which seem to

correspond to the 1PR QFT diagrams come from the product of two terms arising from

two Schottky group elements in the infinite products, e.g. k1
1
2 from one factor and k2

1
2

from another factor.

Recall from Fig. 4.3 that k(S1S2)
1
2 , which is the source of the terms in the first line of

Eq. (4.133), corresponds to a homology cycle which passes around both handles crossing

itself in the middle, and S1S2 is the only Schottky group element with this property

which survives in the QFT limit; it is also the only one which contributes to the Feynman

diagrams with quartic vertices.
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Chapter 6

Effective actions

6.1 Quantum effective actions and low-energy effective ac-

tions

The quantum action, or 1PI effective action Γ (which many authors just call the effective

action) is an object we can define for quantum fields theories which has the property that

the tree level Feynman graphs we obtain from it give the complete scattering amplitude

[104]. It can be written as the integral of an effective potential Γ =
∫

ddxV . V has

the property of being the ground state average energy density as a function of some order

parameter, such that a vacuum state of the theory should realise a minimum of V [105, 106].

In the standard analogy between quantum field theory and statistical mechanics, −Γ

corresponds to the Gibbs free energy [105, 107].

The effective action is useful for studying theories with spontaneously broken symme-

tries, i.e., theories whose lagrangian L has a symmetry which is not a symmetry of the

vacuum [108]. Use of the effective action allows us to survey all possible vacua of a theory

simultaneously, as opposed to perturbing about a chosen vacuum. Since radiative (quan-

tum) corrections are included in Γ, we can potentially find vacua which are not minima

of the classical action [106].

In general in a gauge-theory, the effective action is a gauge-dependent quantity [109].

However, physical observables such as physical masses and coupling constants and S-

matrix elements computed from it are independent of gauge parameters [110]. Since Γ is

associated with the energy density of the vacuum at a stationary point, it is important

that it is gauge-independent at such points, and indeed this is the case [105].

6.2 The Callan-Symanzik β function for scalar QED

Scalar QED is a quantum field theory whose field content consists of a charged scalar field

minimally coupled to a U(1) gauge field. It is similar in some senses to (spinor) QED, but

all of the fields are bosonic so it can be studied with only the NS sector of an open type

II superstring. We can build a model from a U(2) theory on the Coulomb branch, using

non-coincident parallel D3 branes as in Fig. 4.1, but with only two of them.
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The Callan-Symanzik β function is a physical quantity which describes how the renor-

malized coupling constant varies with the characteristic energy scale of the physical process

in question. In some cases, it can be calculated using the background field method in the

following way. One takes a renormalizable theory and inserts by hand a background field

and calculates the effective action. The expression will contain divergences, but these

are not physical divergences, rather, they arise from the fact that the variables our La-

grangian is expressed in terms of (in our case, the mass m and the overall normalization

B of the background field) are not the appropriate physical variables. Because the theory

is renormalizable, we can rescale the ‘bare’ quantities m and B such that the divergences

disappear. This has to be done order-by-order in perturbation theory.

When using the background field method to calculate the effective action and the

β function, only the background field B undergoes wavefunction renormalization; the

quantum fields do not renormalize, which is one of the main attractions of this method

[111, 112].

We start by näıvely writing down the unrenormalized h-loop effective actions L(h)

as simply the sum of all h-loop Feynman diagrams, and then the unrenormalized 2-loop

effective action is simply the sum
∑2

i=0 L(2):

Leff = L(0)[B] + L(1)[gB,m2] + L(2)[gB,m2] +O(α3) , (6.1)

where here α ≡ g2

4π is the fine structure constant. L(1) can be written as a sum of a finite

part L(1)
R [gB,m2], a regularized part proportional to L(0)[B], and another ‘cosmological

constant’ term independent of the background field. L(2)[gB,m2] can be written as a sum

of a finite part, a part proportional to L(0)[gB], and a part proportional to ∂L(1)
∂m2 [gB,m2].

To understand the appearance of the derivative with respect to m2, we observe that

m2 must not be the physical mass of the theory, the physical mass is m2
R = m2 + δm2.

At the order we’ve calculated, δm2 is of order α; when we include more loops then δm2

will also include correction of higher power in α. Then the physical effective action will

be equal to

Leff = L(0)[BR] + L(1)
R [gRBR,m

2
R] + L(2)

R [gRBR,m
2
R] +O(α3) (6.2)

= L(0)[BR] + L(1)
R [gRBR,m

2] + δm2∂L(1)

∂m2
[gRBR,m

2]

+ L(2)
R [gRBR,m

2] +O(α3) (6.3)

where we have Taylor expanded the L(i)s about the bare mass. This only makes a dif-

ference to L(1): L(0) is independent of the mass, and the correction to L(2) would be of

order α3, and we are only computing the effective action up to order α2, so we have put

L(2)
R [gRBR,m

2
R] = L(2)

R [gRBR,m
2] +O(α3).

We can calculate the renormalized field strength BR by requiring that L(0)
R [BR] has the

same form as L(0)[B], i.e. L(0)
R [BR] = −1

2B
2
R, where L(0)

R is the sum of the contributions

at each loop level which are proportional to L(0)[B]. This defines the renormalization

constant Z3 via BR = BZ
− 1

2
3 . In order for L(1)

R and L(2)
R not to change due to this field
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redefinition, it is also necessary that we renormalize the coupling as gR = gZ
1
2
3 .

As computed this way, Z3 depends on the bare mass m2 which we used to regularize

the integrals, but since m2 itself is not a physical quantity but is given by m2
R − δm2, we

need to insert this expression into Z3, and only then will we be able to correctly calculate

the β function.

To be able to carry out this calculation with the use of the string theory techniques

carried out above, we should calculate the relevant Feynman diagrams in the non-linear

Gervais-Neveu gauge [11].

Similarly to the calculation in section 5.2, let us write the components of the gauge

field and the scalar field as

Aµ = Aµ +Qµ = A3
µT

3 +Q3
µT

3 +Q0
µT

0 ; (6.4)

Φ = 〈Φ〉+ Φ′ =
m

g
T 3 + φT+ + φ∗T− , (6.5)

where we have taken advantage of the fact that the gauge group is now U(2) to express

the fields in terms of Pauli matrices as:

T 0 =
1

2
1 T i =

1

2
σi T± =

1√
2

(T 1 + iT 2) (6.6)

which satisfy

Tr(TATB) =
1

2
δAB Tr(T±T±) = 0 Tr(T±T∓) =

1

2
(6.7)

[T 0, ·] = 0 [T±, T∓] = ±T 3 [T 3, T±] = ±T± (6.8)

{T 0, x} = x {T±, T±} = 0 {T±, T∓} = T 0 {T±, T 3} = 0 {T 3, T 3} = T 0 . (6.9)

Since our goal in this section is to model scalar QED, we have not explicitly included

the full field content that would arise naturally from putting U(2) Yang-Mills theory on

the Coulomb branch, i.e. we haven’t explicitly included the charged (with respect to the

background field) and massive off-diagonal components of the gauge field or the uncharged

diagonal components of the scalar.

The interaction vertices can be derived as they were in section 5.2 by taking the usual

Lagrangian for dimensionally-reduced Yang-Mills theory, expanding it in components, and

then discarding all terms involving fields which don’t appear in our scalar QED model.

In background Feynman gauge DA
µ Q

µ = 0, the contribution from the the Q0 term

would vanish since it only appears in the Lagrangian via a commutator, which vanishes. In

Gervais-Neveu gauge, however, a term including Q2 appears in the gauge fixing Lagrangian

which means Q0 has to be accounted for.

Let us first calculate the one-loop correction to the effective action. It is no harder to

carry out the general case for a broken U(N) theory instead of a broken U(2) theory, so
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let us be general.

The classical action is given by

Lcla = −1

2
Tr
(
FµνF

µν) . (6.10)

The classical gauge field Aµ only interacts with other fields via a commutator in the

covariant derivative, so it is convenient to split it into a part proportional to the identity

A
U(1)
µ which doesn’t interact with anything, and a traceless part A

SU(N)
µ :

Fµν = ∂µAν − ∂νAµ ; Aµ(x) = AU(1)
µ +ASU(N)

µ ; (6.11)

and we can write A
SU(N)
µ as

ASU(N)
µ =

1√
2
x1ηµ2


B1 0 . . . 0

0 B2 . . . 0
...

...
. . .

...

0 0 . . . BN

 ;

N∑
i=1

Bi = 0 , (6.12)

where the Bi are normalized as U(1) gauge fields. Splitting F up into

FU(1)
µν = ∂µA

U(1)
ν − ∂νAU(1)

µ ; F SU(N)
µν = ∂µA

SU(N)
ν − ∂νASU(N)

µ , (6.13)

we see that F
U(1)
µν is also proportional to the identity in the gauge group while F

SU(N)
µν is

also traceless, so we get

Lcla = −1

2
Tr
(
FU(1)
µν FU(1),µν

)
− 1

2
Tr
(
F SU(N)
µν F SU(N),µν) , (6.14)

where the cross-term has cancelled because it is the trace of the product of a term pro-

portional to the identity and a traceless term.

Now, we can use the identity

N∑
i=1

B2
i =

1

N

(( N∑
i=1

Bi
)2

+

N∑
j=2

j−1∑
i=1

(Bi −Bj)2
)

(6.15)

along with the fact that
∑N

i=1Bi = 0 to rewrite the second term in Eq. (6.14) as

−1

2
Tr
(
F SU(N)
µν F SU(N),µν) = − 1

N

N∑
j=2

j−1∑
i=1

B2
ij , (6.16)

where we’ve defined

Bij ≡
Bi −Bj√

2
. (6.17)

We can take equation (6.16) to be our tree-level effective action. We want to check that

this is normalized properly to be compared to the SU(2) case. There, we have written the
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background field in terms of the Pauli matrix T 3 via

AU(2)
µ = x1ηµ2BT

3 T 3 =
1

2

(
1 0

0 −1

)
(6.18)

or, writing this in the form of equation (6.12), we have

AU(2)
µ = x1ηµ2

1√
2

(
B/
√

2 0

0 −B/
√

2

)
(6.19)

so to match the normalization we are using, we need B1 = B/
√

2 and B2 = −B/
√

2 so

B12 = B and the tree-level Lagrangian is given in terms of the background field as

−1

2
Tr
(
F SU(2)
µν F SU(2),µν) = −1

2
B2 . (6.20)

Now we want to compute the one-loop effective action. Generically, it can be found

from the expression [107]

Γ1 =
i

2
Tr log

[
− δ2L1

δφ δφ

]
. (6.21)

For the scalars, the quadratic part of the Lagrangian is given (after a partial integration)

by

L = −1

2

N∑
i,j=1

φij(x)
(
DµD

µ +m2
ij

)
φji(x) (6.22)

Where, since the background field is diagonal, the component-wise covariant derivative

acts as

Dµφ
ij = ∂µφ

ij + igBijx1ηµ2φ
ij . (6.23)

It’s the same as the covariant derivative for a complex scalar field in the U(1) background

gauge field Bijx1ηµ2, so the propagator can be written down straight away from Eq. (5.60).

Using the heat kernel defined in the same equation, we can see straight away that

d

d(m2
ij)

(−t)−1Kij(x, y; t) = Kij(x, y; t) (6.24)

from which it follows that

log(Dij
µD

µ,ij +m2
ij) = −i

∫ ∞
0

dt

t
Kij(x, y; t) , (6.25)

plus a constant. Substituting this in to equation (6.21), we arrive at an expression for the
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unrenormalized one-loop effective action:

Γ1 =
1

2

1

(4π)
d
2

N∑
i,j=1

∫
ddx

∫ ∞
0

dt

t
d
2

gBije
−tm2

ij

sinh(gBijt)
(6.26)

The integral is divergent but we can make a Taylor-series expansion of the integrand in

terms of the integration variable t and subtract the two divergent terms, using

gBij
sinh(gBijt)

=
1

t
−
g2B2

ijt

6
+O(t3) . (6.27)

We will simply subtract the 1

t
d
2+1

pole, equating it to a cosmological constant which isn’t

important for investigation of the background field, while the 1

t
d
2−1

pole contributes to the

wavefunction renormalization in spacetime dimension d = 4, which we now fix. Therefore

we can write

Γ1 =
1

2

1

(4π)2

N∑
i,j=1

∫
ddx

∫ ∞
0

dt

t2
e−tm

2
ij

(
gBij

sinh(gBijt)
− 1

t
+
g2B2

ijt

6

)

+
1

2

1

(4π)2

N∑
i,j=1

∫
ddx

∫ ∞
0

dt

t3
e−tm

2
ij

− 1

2

g2

(4π)2

N∑
i,j=1

B2
ij

6

∫
ddx

∫ ∞
0

dt

t
e−tm

2
ij . (6.28)

For N = 2, the first term is normalized the same as the 1 loop scalar QED effective action

in equation (10) of [113] and equation (3.51) of [114] since the only nonzero contributions

come from B12 and B21, cancelling the overall factor of 1
2 . The second line of Eq. (6.28)

is just the Bij-independent cosmological constant.

Now, we can use the fact that the integrand is symmetric under swapping (ij)↔ (ji)

to re-express the sum, and also we regulate the divergent dt integral by inserting a proper-

time cutoff, then we find that the last line of Eq. (6.28) can be written as

g2

(4π)2

N∑
j=2

j−1∑
i=1

log(t0m
2
ije

γE)
B2
ij

6

∫
ddx . (6.29)

where γE is the Euler-Mascheroni constant. Note that term-by-term, it is proportional

to the tree-level effective action in equation (6.16), i.e. the classical action for our given

background. According to the philosophy of renormalization, we should absorb these

divergences into redefinitions of the wavefunction by requiring that the tree level effective

action (i.e. just the classical action) as a function of the renormalized background field

strengths BR
ij is equal to the same function of the ‘bare’ background field strengths Bij

plus the the divergent terms, i.e. we need

Γ0[BR
ij ] = Γ0[Bij ] +

g2

(4π)2

N∑
j=2

j−1∑
i=1

log(t0m
2
ije

γE)
B2
ij

6

∫
ddx (6.30)
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= − 1

N

N∑
j=2

j−1∑
i=1

B2
ij

(
1− N

6

g2

(4π)2
log(t0m

2
ije

γE)
) ∫

ddx (6.31)

which holds if the renormalized field strengths are related to the bare field strengths via

(BR
ij)

2 =
(
1− N

6

g2

(4π)2
log(t0m

2
ije

γE)
)
B2
ij . (6.32)

In the background field method, this is all we need to know in order to calculate the β

function. Noting that the form of

ΓR1 =
1

2

1

(4π)2

N∑
i,j=1

∫
ddx

∫ ∞
0

dt

t2
e−tm

2
ij

(
gBij

sinh(gBijt)
− 1

t
+
g2B2

ijt

6

)
(6.33)

is unchanged if we make the substitution

Bij → BR
ij g → gR ≡

(
1− N

6

g2

(4π)2
log(t0m

2
ije

γE)
)− 1

2 g ≡
√
Zg , (6.34)

which defines the renormalization coefficient Z. In terms of the fine structure constant

α = g2

4π , we have

αR = Zα0 Z−1 = 1 +
N

6

α0

4π
log
((m2

ijt0)−1

eγE

)
. (6.35)

where α0 and αR are the bare and renormalized values of α, respectively. The β function

can then be calculated from the equation βα(αR) = − ∂αR
∂ logm

∣∣∣
t0

from which we find

βα(αR) =
N

3

α2
R

4π
. (6.36)

The β function is also commonly expressed not in terms of the fine-structure constant α

but in terms of the coupling constant g; since the β function does not describe a scalar

field but it is the coefficient of a vector field, we can transform this via

βg(g) =
1

∂α/∂g
βα(α(g)) =

N

2

g3

48π2
; (6.37)

for N = 2 this matches the scalar QED β function βe on p. 470 of [107].

We have checked, therefore, that our setup is correctly normalized; we can move on to

use it to calculate the two-loop correction to the scalar QED β function.

6.2.1 Ritus’ calculation for (scalar) QED

The two loop-correction to the β-function was calculated by Ritus for QED in [115] and

for scalar QED in [113]. The general idea is to consider a charged scalar or fermion in

a constant background U(1) gauge field and find the tree-level propagator as an exact

function of the background field strength B. This allows the effective action to be written

down at two loops as an expansion in ‘vacuum’ Feynman graphs, where the background
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field enters via the propagator. Some of the diagrams need to be regularized, and it is

found as expected that the divergences are all proportional to the one-loop effective action,

and that they can therefore be made to vanish if the gauge coupling g and squared-mass

m2 of the matter field are renormalized in a certain way.

Let us calculate all of the two loop Feynman diagrams contributing to the scalar QED

effective action, in the Gervais-Neveu gauge (using the relevant terms of the action in

section 5.2 that involve only the fields we are interested in).

The diagram with two scalar propagators and one photon propagator becomes slightly

modified from Ritus’ calculation in [113] due to the additional interaction vertices in the

Lagrangian coming from the Gervais-Neveu gauge fixing; the diagram now depends on the

gauge parameter γ:

= −i
g2

(4π)d

∫∫∫ ∞
0

dt dt′ ds e−(t+t′)m2 ∆−1
F ∆

1− d
2

0

cosh(gBt) cosh(gBt′)

[
d− 2

∆0
s+ (6.38)

2 cosh(gB(t− t′))s
∆F cosh(gBt) cosh(gBt′)

]
+ i

1− γ2

2

g2

(4π)d

∫∫ ∞
0

dt1

t
d
2
1

dt2

t
d
2
2

gBt1e−m
2t1

sinh(Bt1)

gBt2e−m
2t2

sinh(gBt2)

where

∆F =
sinh(gB(t1 + t2))

gB
t3 +

sinh(gBt1)

gB

sinh(gBt2)

gB
(6.39)

∆0 = lim
B→0

∆F = (t1t3 + t2t3 + t1t2) . (6.40)

Recalling that we imposed the Gervais-Neveu gauge condition before dimensionally re-

ducing and obtained a new quartic scalar vertex, we get a Feynman diagram with a

figure-of-eight topology that is not found in the standard gauge in [113]:

= i
γ2g2

(4π)d

∫∫ ∞
0

dt1

t
d
2
1

dt2

t
d
2
2

gBt1e−m
2t1

sinh(gBt1)

gBt2e−m
2t2

sinh(gBt2)
. (6.41)

Note that this diagram is actually proportional to the second term (proportional to (1−γ2))

in Eq. (6.38). It doesn’t completely cancel the γ-dependence, however. In fact, there is a

new type of connected, but not 1PI, diagram which appears in Gervais-Neveu gauge: the

one-particle-reducible (1PR) diagram

= −1

2
i
α2g2

(4π)d

∫∫ ∞
0

dt1

t
d
2
1

dt2

t
d
2
2

gBt1e−t1m
2

sinh(gBt1)

gBt2e−t2m
2

sinh(gBt2)
. (6.42)

which vanishes when γ = 0.

It is a good consistency check to note that when Eq. (6.38), Eq. (6.41) and Eq. (6.42)

are added, the dependence on γ cancels, and we get the same result as Ritus’ calculation
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which comes only from the diagram with the same topology as Eq. (6.38).

Feynman diagrams with only one charged propagator also contribute: the following

vanishes, in fact, in Gervais-Neveu gauge γ2 = 1

= i(1− γ2)d
g2

(4π)d

∫∫ ∞
0

dt1

t
d
2
1

dt2

t
d
2
2

gBt1e−m
2t1

sinh(gBt1)
. (6.43)

In fact, the gauge-dependence of Eq. (6.43) exactly cancels that of a 1PR diagram with

one charged propagator, i.e.

= id
γ2g2

(4π)d

∫∫ ∞
0

dt1

t
d
2
1

dt2

t
d
2
2

gBt2e−t2m
2

sinh(gBt2)
, (6.44)

which also didn’t appear in [113].

Since these diagrams all sum to give exactly the same result as the sum of the diagrams

in the gauge used by Ritus in [113], the rest of the calculation goes through identically

and the two-loop correction to the scalar QED β-function can be correctly recovered.

There is a caveat, namely, that to show exact correspondence between the two calcu-

lations, we have had to use 1PR diagrams where we were supposed to be computing a 1PI

effective action.

It can be shown explicitly with a reproduction of Ritus’ long calculation using only the

1PI diagrams with an explicit Gervais-Neveu gauge parameter γ2 that the β function is

actually independent of γ2, and therefore the 1PR diagrams are superfluous, as expected.

It has been shown in chapters 4.3 and 5 that the 1PI vacuum diagrams in a gauge

theory in the appropriate non-linear gauge can be found, sector-by-sector, by systemati-

cally isolating the appropriate terms in a Schottky-group expansion of the corresponding

string theory vacuum diagram. We have just seen that by isolating appropriate sectors

of an N = 2 Yang-Mills theory on the Coulomb branch in the Gervais-Neveu gauge, we

can find the two loop correction to the scalar QED β function. It follows that it would be

possible to carry out the calculation directly from string theory and obtain the physically

correct answer, by manually selecting only those factors in the integrand corresponding to

the field content of scalar QED.
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Chapter 7

Outlook

We have seen that in the super-Schottky parametrization of super moduli space, we can

find precisely a correspondence between terms in the expansion of the two loop vacuum

amplitude, and individual Feynman diagrams, in the non-linear gauge Eq. (5.27). This

matching holds not only in the pure Yang-Mills theory, but also in a dimensionally-reduced

version coupled to scalars. Moreover, the matching holds even when the scalar fields are

given VEVs, corresponding to separating the D-branes on which the open strings are

ending.

Using the fact that the correspondence between string theory and QFT holds not only

at the level of amplitudes but also sector-by-sector on the worldsheet, we have been able

to isolate only certain fields we are interested in for certain applications, allowing us to

obtain, for example, the Callan-Symanzik β function for scalar QED at two loops by

selecting only the appropriate massless fields, finding agreement with the expression in

the literature.

In forthcoming work, we will calculate the two-loop β function of the full theory we have

considered, of a dimensionally-reduced Yang-Mills theory with scalar VEVs. This is more

complicated than the scalar QED case, because there are many more diagrams involved,

and because the various fields can undergo a priori different mass-renormalizations, which

means the renormalization techniques used in [115, 113] have to be applied with more care.

The spacetime theory we have been considering, a dimensionally-reduced version of

bosonic Yang-Mills theory, is not the full low-energy theory of type IIB superstrings; the

full low-energy theory in d = 4 is N = 4 super-Yang-Mills coupled to Einstein gravity.

This suggests two obvious directions in which this work can proceed. First of all, the

Ramond sector of the open string theory should be incorporated into our procedure for

finding diagram-by-diagram correspondences, since the Ramond sector of the open string

corresponds to spacetime fermions and is therefore necessary for calculations in super-

Yang-Mills theory, or, indeed, even for obtaining simple models like (spinor) QED or

physically interesting models like Yang-Mills coupled to fermionic matter.

It is technically complicated to generalize our calculations to incorporate the Ramond

sector; the reason for this is that the super-projective transformations that are used to

build SRSs with super-Schottky groups are geometrically equivalent to sewing pairs of

Neveu-Schwarz punctures; Ramond punctures come from a different type of singularity in
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the super-conformal structure of the worldsheet [60, 79] so more work is necessary.

Another obvious direction in which the calculations can be generalized is to include

the gravitational sector of the low energy theory by calculating closed string vacuum

amplitudes. We could consider, for example, graviton vacuum amplitudes analogous to the

gluon vacuum amplitudes we’ve discussed here, but we could also study graviton scattering

amplitudes. Indeed, while the double-annulus worldsheet we’ve been most interested in

has a natural interpretation near one boundary of super-moduli space as a two-loop open

string vacuum diagram, we can also investigate the same worldsheet topology through

the closed string channels, in which it corresponds to a tree-level three-point function of

closed string states being emitted (or absorbed) by D-branes. The physical quantity under

investigation is then the gravitational interaction between three D-branes. This description

is useful near the boundary of moduli space in which our Schottky group multipliers are

close to 1 instead of 0; in this region the series we use are not convergent and we need to

switch to a different description, for example, to represent the worldsheet by a different

Schottky group generated by our bi cycles instead of our ai cycles. Much of the technology

we’ve used is still useful: for example, the D-branes can be given velocities—useful for

investigating gravitational interactions—by giving analytically continuing monodromies

of the worldsheet fields εµ → iεµ. In the case of interactions between D0-branes, this setup

has been investigated in the literature in the α′ → 0 limit around the two complementary

boundaries of moduli space [116] but no full string derivation is known.

Everything we have calculated (except from the example in section 2.4) has been in

terms of ‘vacuum’ diagrams without external states (although they are not true vacuum

diagrams since the open strings or quantum fields in question have been coupled to back-

ground gauge fields via a modified propagator). A natural and important extension of

the work will be to include external states, so that physical scattering amplitudes can be

found. It is possible that the Schottky group techniques we’ve employed could lead to

interesting simplifications of multi-loop QFT scattering amplitudes.
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Appendix A

Conventions

We use the metric with signature (−,+, . . . ,+) for string theory calculations and (+,−, . . . ,−)

for quantum field theory calculations.

Our mode expansion of ∂Xµ is given by Eq. (2.132) which is different from that in

e.g. [62] and [21] since our formula has an overall factor of
√

2α′ where theirs has an

overall factor of
(
α′

2

) 1
2 . Their expressions for e.g. OPE’s between chiral fields can

therefore be translated into our language by making the substitution α′ 7→ 4α′.
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