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Abstract

In an introductory chapter, a summary of the construction of string theories is given, for
both the bosonic string and the RNS superstring. Relevant mathematical technology is
introduced, including super-Riemann surfaces. Conformal field theory is discussed and
BRST quantization of the string is explained.

(Super) Schottky groups for the construction of higher-genus Riemann surfaces are
introduced. As an example of the use of Schottky groups and super-Riemann surfaces,
the one-loop gluon two point function is calculated from string theory.

The incorporation of background gauge fields into string theory wia nontrivial mon-
odromies (twists) is discussed. The two loop Prym period matrix determinant is computed
in the Schottky parametrization.

The string theory model with N parallel separated Dgs-branes is introduced, and
the formulae for the the vacuum amplitude are written down. A manifestly symmet-
ric parametrization of two loop Schottky space is introduced. The relationship between
worldsheet moduli and Feynman graph Schwinger times is given. The o/ — 0 limit of the
amplitude is written down explicitly.

The lagrangian for the corresponding gauge theory is found, making use of a general-
ization of Gervais-Neveu gauge which accounts for scalar VEVs. Propagators in the given
gauge field background are written down. All of the 1PI two-loop Feynman diagrams are
written down, including diagrams with vertices with an odd number of scalars. Illustra-
tive example Feynman graphs are computed explicitly in position space. These results are
compared with the preceding string theory results and exact agreement is obtained for the
1PI diagrams.

An example application is given: the computation of the 5 function of scalar QED at

two loops with the same methods, leading to the same result as found in the literature.
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Chapter 1

Introduction

As has been known since the early days of string theory [2, 3], in the limit of vanishing
string length (or infinite tension) o’ — 0, the theory can be approximated by a low-energy
effective theory of (super) Yang-Mills coupled to Einstein gravity.

In this thesis, we establish that the correspondence holds not only at the level of
the full amplitude, but even diagram-by-diagram, with the contributions associated with
the various quantum fields being identifiable on the string theory side. To make the
correspondence, we need to use a particular parametrization of (super) moduli space known
as Schottky groups, which have been in use since the very early days of string theory [4] 5] 6]
and set on a more rigourous footing in the 1980s [7, [8, [0, 10]. On the quantum field theory
(QFT) side, we need to use a particular non-linear gauge condition first written down by
Gervais and Neveu in [I1].

String theories have been a source of useful insights about gauge theories [12 [13], 14}, [15]
and we discuss, in particular, the calculation of the Euler-Heisenberg effective action for
scalar QED using string-based techniques as in [16].

The structure of the thesis is as follows: in Chapter [2| we recall some aspects of the
construction of string theories, starting with bosonic strings and then superstrings in the
Ramond-Neveu-Schwarz formalism. We discuss various aspects of quantization, such as the
construction of the worldsheet Faddeev-Popov (b, ¢) ghost system and BRST quantization.
We show how (super) Riemann surfaces are constructed with the use of (super) Schottky
groups, and as an example of the use of super Schottky groups, we give some details of the
calculation of the one-loop correction to the gluon two-point function from string theory.

In chapter 3] we discuss how a constant background U(1) gauge field can be incorpo-
rated into string theory by giving non-trivial monodromies to the worldsheet fields, and
we calculate the determinant of the super Prym period matrix, which is an important
ingredient for the two loop amplitudes we calculate in the following chapter.

In chapter 4] we discuss the model we use as a ‘laboratory’ to examine the corre-
spondence, namely a stack of N parallel separated Ds-branes with constant U(1) gauge
fields on their worldvolume. We show how to calculate the two-loop vacuum amplitude
in this context. We then discuss how to find the o/ — 0 limit in way that makes the
diagram-by-diagram matching with QFT completely manifest.

In Chapter |5 we find the lagrangian for the Yang-Mills theory which corresponds to



the low-energy effective theory of our setup, and then we calculate all of the two-loop 1PI
vacuum diagrams. We show how all of them match terms in the Schottky group expansion
of the string theory amplitude in the previous Chapter.

In Chapter [6] we discuss how the correspondence can be used as a tool for investigation
QFT effective actions, and as an example we discuss how the two loop Callan-Symanzik
B function for scalar QED would be studied with our approach. We finish with Chapter
[7] which discusses forthcoming work and possible generalizations of the research we’ve

undertaken.



Chapter 2

Multiloop calculations in

Superstring theory

In this chapter we make extensive use of the textbooks [I7, [I8] [19] and the lecture notes
[20, 21].

An account of the historical development of, and motivation for string theory is given
in [22].

String theory evolved originally from a 4-point scattering amplitude written down
by Veneziano [23] constructed to satisfy the properties of crossing symmetry and of being
expressible as a sum of poles in either the s-channel or the ¢-channel (but not both channels
simultaneously) [24]. The expression was quickly generalized to an arbitrary number of
external states (see the early reviews [25 [26] and references therein). It was realized
soon by a number of authors that the scattering amplitudes described the dynamics of

relativistic strings ([27] and references therein).

2.1 Classical bosonic strings and superstrings

2.1.1 Classical point particles

To guide our analysis of quantum strings, we begin with the much simpler but in some
ways analogous case of the point particle. Classically, the Lorentz-invariant action for a
point-like scalar particle of mass m is simply m times the relativistically-invariant length
of the worldline:

oXH oXV
S = —m/dT nuywﬁ, (21)

where 7 is a co-ordinate on the worldline of the particle (see Fig. 2.1a)), and X#(7) is
the embedding function giving the particle’s position in spacetime. Eq. (2.1)) has the
property of being invariant under reparametrizations of the worldline 7 — 7/, but since it

is proportional to m it vanishes identically for massless particles. This can be remedied
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(a) (b)

Figure 2.1: Co-ordinates on the worldline of a particle and the worldsheet of a string.

by introducing another worldline field e(7); then introducing the action

1 1 OX" XY )

To find the classical equations of motion (e.0.m.), this must be extremized with respect

to the variations e — e + de and X* — X* + 0 X*, yielding

5 o Nuw —€m” =0 (2.3)
and
0 /10X"
I e — 2.4
87(6 87’) 0, (2.4)

respectively. Now, Eq. is still invariant under an arbitrary reparametrization 7 — 7,
so long as e(7) transforms as e(7) = (%)716(7'). We can use this redundancy to choose
7 such that e(r) = 1, then the e.o.m. Eq. take on the same form as those for the
original action Eq. with 7 as the proper time. Because of this we say that the actions

are ‘classically equivalent’.

2.1.2 Classical bosonic strings

The first attempt at writing down the action for a free bosonic string involved the natural
generalization of Eq. , namely, it was proportional to the Lorentz-invariant “area”
of the two-dimensional surface traced out by the one-dimensional string as it propagated
through spacetime, multiplied by the tension of the string [28]. We can parametrize the
1-dimensional string by a coordinate o and let the two-dimensional surface traced out by
the string, i.e. the worldsheet ¥, be parametrized by ¢ and another coordinate 7 as in
Fig. [2.1bl Then the action is given in terms of the pullback (or ‘induced’) metric by the
Nambu-Goto action: if we let v/—a denote /— det a for any bilinear form a, then

oX* oX”

900 g D)

SNambu—Goto = _T/dT do V=75 Yo =

1

where T = 5 is the string tension, and ¢° = 7; ¢! = ¢. This is difficult to quantize

— 21«

because of the square root, so as we did in the point particle case, we introduce a new

11



field h®? (o, 7) and define the action [29]
T afs v
Shos = —3 dodr V—=hh* 0, X 05 X" 1 . (2.6)
To see that Eq. (2.6) is classically equivalent to Eq. (2.5)), we can impose the principle of
stationary action with respect to h*. The variation of Sp.s can be found with the aid of
the Jacobi rule for the variation of a determinant, j/—h = —%\/—hhagéhaﬁ , yielding

T 1
0Shos = —3 /da drv—h ( — 5h,ﬂshwﬁ + 535(/53) 5haﬂaaX“85Xan. (2.7)

Customarily, we write [17]

47 58Sy,
X LBl (2.8)
1
= ( — Shagh™® + 635%)37?( “Os X My (2.9)

so the vanishing of the variation of the action with respect to h*® can be imposed by
the constraint To)é% =0.T O)é% is called the stress-energy tensor for X*, since its definition
matches that in general relativity. TO)[% vanishes, i.e. the equations of motion are satisfied,

whenever h*8 is proportional to the pullback metric up to rescaling:

O5bos _ . (2.10)

haﬁ(a, 7)=Q(0,7) aaxuaﬁxumw Srod =

Inserting this expression for h®? into Sy, we retrieve the Nambu-Goto action Eq.
as expected.

In fact, the rescaling in Eq. is not just a symmetry of the classical solutions but
a symmetry of the action Eq. called Weyl invariance [29], under which h,g can be

locally rescaled:
hB(o,7) — e‘g(g’T)ho‘ﬁ(a, 7). (2.11)

To‘f% is automatically traceless due to Weyl invariance. To see this, we consider an infinites-
imal Weyl symmetry h%® — (1 — 6A)h*?, then [30]

47 §Shos 0P 41 85y
TS, = TSR = — os = — oS — 2.12
xa T nes V/—h 6heBgN V=R o ! (2.12)

where we’ve used the fact that the Weyl transformation affects Spos only via h®P.

It can be readily seen that the action Eq. is also invariant under reparametrization
of the worldsheet. To derive constraints, we need to consider infinitesimal diffeomorphisms.
Consider a vector field e€* which deforms the co-ordinates as % — o + £, then to first
order in €, the variation of tensors on the worldsheet is given by the Lie derivative L£¢ with
respect to £ [31]. The fields transform as [17), 32} [31]

XM = XF 4 eLe(XH) = XM 4 €0, XM

12



hag = hap + eﬁg(ha/g) = hag +€Vaés +€Vga, (2.13)

to order O(e?). V, is the Levi-Civita connection which is symmetric and satisfies Vehag =

0, given in terms of Christoffel symbols by [32]
1
Vafg = aa§5 — F’yaﬁ 57; F'Yag = Eh'yé(aahg(; + 65ha5 — 65hag) (2.14)

To find the equation of motion, we can make a convenient choice for h** using

Eq. (2.13) and Eq. (2.11)) to put it in the form
hoc,B(O-a 7-) = e(b(U’T)noaB . (215)

It is always possible to choose coordinates for which e? = 1 locally, but there are topological

obstructions for more complicated worldsheets. In the gauge Eq. (2.15]), the action becomes
T 14
Sconf = ) /da dT 0% X 0, X" 1y (2.16)

from which it’s easy to see that the e.o.m. for X* is the wave equation %9, X* = 0. More

generally, the e.o.m. can be written in terms of the Laplacian A as [33]

AXY = 0; A= \/iihaa(\/ih h0s -) . (2.17)
Note that the action is independent of the overall factor e? appearing in Eq. ,
corresponding to the Weyl symmetry. It follows from diffeomorphism invariance that 73
is covariantly conserved whenever the e.o.m. for X* are satisfied. To see this, we consider
the variation of Eq. under a reparametrization generated by the vector field £%, so
X* and hqp vary according to Eq. . Since we know that this is a symmetry of S,

we have

08 08
= = — H
0=14S 5 M(SX +5haﬁ

1
_ —W/dT/dO' V=hTY¥ V.85, (2.19)

Shags (2.18)

where we’ve used 5@?# = 0 and inserted the expression for 7,3 in Eq. 1) and the
expression for dhqp in Eq. (2.13). Partially integrating the covariant derivative on the

right-hand side of Eq. (2.19) we get

VT3 =0, (2.20)
where the covariant derivative of a tensor with two upper indices is given by
VAT = o\T*P 412, 77° 4 TP\ 77 . (2.21)

The action Eq. (2.6) enjoys a conformal symmetry following from Weyl invariance

13



Eq. (2.11) and reparametrization invariance. A conformal transformation is a diffeomor-
phism ¢® — ¢’ = f%(o) such that the metric is unchanged only up to the action of a
Weyl transformation, ds'> = Q(c)ds?. In terms of an infinitesimal conformal transforma-

tion with f*(0) = 0® + €€ and Q(0) = 1 + €k, to first order in € we have
Khag = hag 0a€™ + hox 956" + E20\hag , (2.22)

which is the conformal Killing equation [34]. The right-hand side can be written in terms
of the connection as V&g + V&, or in terms of the Lie derivative as L¢(hag). For £ =0
it is just the Killing equation for isometries. Taking the trace of both sides by multiplying
with A8, we get 2k = 2V ,£%, which we can substitute back into Eq. obtaining

P1(§)ap = Vals + Vba — hagVag* = 0. (2:23)

Here we’ve defined the operator P; which maps vectors fields to traceless symmetric ten-
sors; its kernel it the space of conformal killing vectors [33], 35, [36].

In conformal coordinates we have:
Pi(&) = hag 0ol + har 0p6™ — hag nE* = 0. (2.24)

Vector fields satisfying this equation generate symmetries of the string action in conformal
gauge, Eq. (2.16). Multiplying both sides of Eq. (2.24)) by 0% = h*70,, we see that the
terms proportional to 0y¢ all cancel since they are just proportional to Eq. ([2.24), two of

the remaining terms cancel and we are left with
0%0a€p = 0. (2.25)

We also need to introduce boundary conditions in the o direction. In the case of a
closed string, topologically a circle, we customarily let the domain of o be [0,27] so we
typically impose the boundary condition X*(o + 27, 7) = X*(0,7) to ensure that X* is
single valued (although this is not necessarily true, for example, when the target space is
an orbifold, X* is only single-valued modulo the action of a discrete group [37]).

Alternatively, the string can have the topology of a line interval; in this case we let o

range over o € [0, 7]. In this case, when we vary X* we pick up a boundary contribution:

5Shes = —T / T ar [aUX%X”K

—00

T oo T
077/“, + T/ dT/O do 6 X"0,0° X" 1, (2.26)

where we’ve assumed that 6 X*(o,+00) — 0. Therefore for the action to be stationary,
we need not only the equation of motion 9,0%X* = 0, but also conditions to be met at

the boundary. We can choose either
oXH =0 or 0°X" =0; (2.27)

o=0,m o=0,m

the first choice, in which X* is fixed at the endpoint, is called a Dirichlet boundary

14



condition; the second choice is called a Neumann boundary condition. The two endpoints
can have their boundary conditions chosen independently.

We will typically work with a Euclideanized worldsheet action by Wick rotating = —
—i7 so the worldsheet metric has signature (4, +). The metric Eq. becomes h®8 =

e?5%8 and it is useful to introduce the complex coordinates

T+io T—10

z = ; zZ= , 2.28
7 7 (2.28)
so Z = z*. The derivatives transform as
1 — i = 0 = 0
Or=—=(0+0); 0y = —(0—-0), h 0= —; 0= —. 2.29
50+0) 5(0-0).  where - —. (22)
The diagonal components of the metric in this basis vanish: we have
1
h..=(0,0) = §e¢<aT — 0y, 0, —i0,) =0 (2.30)
and similarly hzz = 0, while
= 1 b . . &
h,z = (0,0) = ¢ (07 — 105,07 +10,) = €? = hz,, (2.31)
so the metric has the form
hyz = hs, = e?(7) ; h.. =hz=0. (2.32)
The trace of To)é% in these coordinates is therefore equal to
Tash™ = 2e7°T =0, (2.33)

i.e. Té% has been diagonalized. The Christoffel symbols for Eq. 1} can be calculated
from Eq. (2.14)); all vanish except

%, =0¢; % =0¢. (2.34)
The z component of the conservation equation Eq. (2.20) then becomes

0= VT = OTF + 204T% (2.35)
= e 29(e¥TF) = e 20 hozh = TF) = € 20 (hzahzsTY) = e 20 TX

zz )

so OTX = 0, i.e. T2 is anti-holomorphic (at least away from other operator insertions
[20]). Similarly, from the Z component of Eq. (2.20) we see that 0TX = 0, so T is
holomorphic. Using the fact that this implies 7:X(z,%) has only trivial dependence on %,

and similarly that 7:X(z, %) has only trivial dependence on z, we write

TX(2) = TX(2,%); T () =TX(2,7%). (2.36)

15



In these coordinates, the string action has the form
Shos = T/dz dz X" 0X" . (2.37)

where a factor of i from the Wick rotation has been absorbed to keep the action positive-

definite. The action is unchanged by a coordinate transformation of the form
2 2 = f(2,2); 27 = f(2,2)", where 0f(z,z) =0. (2.38)

i.e. a holomorphic change of coordinates. From this point onwards, we will write a holomor-
phic function as f(z), as though we are treating z and Z as separate variables. Eq. (2.37))
has the e.o.m. 00X* = 0 whose general solution is a sum of arbitrary ‘left-moving’ holo-

morphic and ‘right-moving’ anti-holomorphic parts
XM(z,z) = XI'(2) + XE(2) . (2.39)

In these coordinates with the metric Eq. , the conformal killing vectors can be
found from Eq. ; from o = 8 = z we get 967 = 0 so €7 is anti-holomorphic and from
a =8 =7%we get 0% = 0 so0 £7 is holomorphic, while from a = z, 3 = Z we get 9¢% = 07,

The Noether currents associated to conformal transformations can be expressed in
terms of the stress-energy tensor T (z), X (). To see this, we begin by considering an
infinitesimal diffeomorphism o® — o®+€£%(0), not in general a reparametrization because
it’s not accompanied by a corresponding change in the metric 0hag = €(Vaép + Vgéa).
We know that the action Eq. is unchanged by a reparametrization, which means
that the action will change under an infinitesimal diffeomorphism by minus the change
in the action coming from the change in the metric which would be required to make
the infinitesimal diffeomorphism a reparametrization. Therefore, the change in the action
coming from the infinitesimal diffeomorphism o® — % + €£%(0) will be equal to the
change in the action coming from making no change to the coordinates but deforming the
metric by hag — hag — €(Va€g + Vg&a). We can write the change in the action coming
from a change in the metric in terms of the stress-energy tensor, thanks to Eq. . The
deformation of the inverse metric can be written in terms of the deformation of the metric
via 0hP = —h®VhP6h,s = e(h*IV, €8 + WPV 5£%). The deformation of the action is
given, then, by

0S

/ >0 VR TN eh® 7V, &7 (2.40)

2ma!

where we’ve used the symmetry of T&XB. In terms of the complex coordinates in Eq. 1)
with the conformal-gauge metric Eq. (2.32), this can be written as

08 =

2ma!

/d22 (TX0¢7 + T 0¢%) (2.41)

where the scaling factors from the inverse metric h*? and from /A have cancelled out,

16



we've used T = 0, and we've used that V.£* = 9% and Vz£* = 9€* since the Christoffel
symbols vanish (Eq. )

Treating z and Z as independent coordinates, we may vary them independently, so we
may set e.g. ¥ = f(z,Z) and £ = 0. In this case we get from Eq. that

- 1
08 = e/dgz J%0af(2,Z); where J?(2,Z)=0 and J*(z,%z)= Q—TX(Z), (2.42)

s
i.e. T'(z) is the conserved current associated to translations in z. But more generally,
we can find infinitely many conserved currents: if we multiply f(z,%Z) by an arbitrary
holomorphic function h(z), then it passes through 0 in Eq. (2.41]) and we get the conserved

current

- 1
Ji(52) =0 Ji(27) = S TX (), (2.43)

i
which is holomorphic. Similarly, by setting £ = 0 and &7 = h(z)f(z,Z) we get an anti-
holomorphic conserved current J;(z,z) with Ji(2,Z) = ﬁ?x (Z)h(Z) and J;(z,%) = 0.

The two components of Tof% for the X* fields given by Eq. 1’ can be written down

in complex coordinates as
X 1 v _ 1o
T (2) = == 0X"0X N ; T () = ——0X"0X "N - (2.44)
e} o

The coordinates Eq. 1D range over Re(z) € R and Im(z) € [0, %] for open strings

and [0, v/27] for closed strings. It is conventional to change coordinates to
2 2 =eV?? z—7 = e\/iz7 (2.45)

which is a holomorphic change of coordinates so the action Eq. is unchanged. For
open strings, the boundary o = 0 is mapped to the positive real axis z’ = Re(z’) > 0 and
the boundary o = 7 is mapped to the negative real axis z’ = Re(z’) < 0. The interior of
the string is mapped onto the upper-half plane H = {z +iy|(z,y) € R?;y > 0}. Closed
strings, for which ¢ € [0,27), are mapped onto the whole complex plane. 7 is mapped
onto the radial coordinate |2/| = €7; the far future and past 7 — +oo are mapped onto
2/ = oo and 2/ = 0. Constant 7 slices of the worldsheet are mapped onto circles with

constant |2/|.

2.1.3 Riemann surfaces

In fact, let us relax our original assumption that the worldsheet has the topology of a
strip, and assume only that it is a surface, possibly with boundaries corresponding to
the endpoints of open strings. A priori it could be a non-orientable surface (although
we will see that the Type II superstring theories we are interested in contain only ori-
entable worldsheets). Any orientable two-dimensional Riemannian manifold ¥ (i.e. a
surface with a Riemannian metric) has an almost complex structure, i.e. a tensor J,"

satisfying J,,"J,P = —d&h,; it is given by J,,,"* = \/ﬁemphp” where ¢, is the antisymmetric
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Figure 2.2: The double of a bordered Riemann surface.

Figure 2.3: A basis for the first homology group on a compact Riemann surface.

symbol with e12 = 1 [38],[39]; since the surface is two dimensional this is always integrable
to a complex structure [38], [40].

In the case that the surface has no boundary, it is therefore a Riemann surface, i.e. a
manifold of real dimension 2 which can be covered by complex coordinate charts whose
transition functions are holomorphic [41),42]. A function on a Riemann surface is holomor-
phic if it is holomorphic in a coordinate chart. Two Riemann surfaces are identified if there
is a biholomorphic mapping between them. Since holomorphic transformations do not in
general preserve a metric, there is no intrinsic metric on a Riemann surface. Riemann
surfaces are a natural setting in which to consider the string action Eq. ; the expres-
sion is unchanged by holomorphic changes of coordinates and therefore the integrand is
globally well-defined.

Two dimensional surfaces with a complex structure and a boundary are called bordered
Riemann surfaces by mathematicians [43] [44]. They are locally biholomorphic to the upper
half plane H = {z = z + iy € Cly > 0}. To every bordered Riemann surface ¥ we can
associate a double surface ¥ [6, 138]; this is defined by taking two copies of the surface and
replacing each chart on the second copy with its complex conjugate, which maps points
into the lower half plane, and then identifying corresponding points on the borders of the
two bordered Riemann surfaces (see Fig. . The map I : ¥ — X* taking each point to
its copy lifts to an anti-conformal involution on ¥ whose fixed point set is the border.

To help us describe a compact Riemann surface 3 of genus g, we introduce a basis for
its first homology group H;(X,Z) = Z29 (which is the abelianization of its fundamental
group). This is a set of 2g equivalence classes of curves a,, and b, for p = 1,...,g such
that no two a; cycles and no two b; cycles intersect each other, and that a; intersects b;
once if and only if i = j (see Fig. We can make this precise with the introduction of
an anti-symmetric intersection form [35] (-,-) : H1(X,Z) x H1(X,Z) — Z which counts
the number of times the two curves intersect, with an opposite sign for oppositely oriented
intersections.

There is a notion of a complex line bundle over a Riemann surface, that is, a 2-
dimensional complex manifold £ with a holomorphic projection map 7 : £ — X such that
71 of every point on ¥ is a copy of C [45]. For an open neighbourhood U on ¥ there is
a local trivialization, i.e. 7~ (U) is holomorphically equivalent to U x C. Roughly, E is
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a family of one-dimensional vector spaces varying holomorphically on . Under pointwise
tensor product of vector spaces, the holomorphic line bundles on ¥ form a group called
the Picard group; the inverse of a line bundle is the dual bundle and the identity is the
trivial line bundle, 4.e. the ring of meromorphic functions on .

Line bundles can also be described in terms of equivalence classes of divisors: for a
sectiorﬂ s of a line bundle £ — X with n;th-order poles at finitely many points P; and
mjth-order zeroes at finitely-many points Q;, the divisor of s is the formal sum div(s) =
dinilP =3, m;Q;, and its degree is given by deg(div(s)) = >_; n; — >_, n;. Multiplying
the section s by an arbitrary meromorphic function, we can get any other section s’ of &
which may have different poles and zeroes from s with different multiplicities, however,
because meromorphic functions have the same number of poles and zeroes, deg(div(s')) =
deg(div(s)). Two divisors on ¥ are in the same divisor class if they have the same degree,
and there is a one-to-one correspondence between divisor classes and line bundles [35]. The
space of holomorphic line bundles of degree D on ¥ is called the Picard variety Picp(X).

The cotangent bundle of ¥ can be decomposed as T*Y = T*10% ¢ T*ODY where
T*10% and T*OY are the line bundles whose local trivializations are spanned by dz
and dz, respectively [46]; these are well-defined because the transition functions on X

(1.9% is a holomorphic line bundle called the canonical bundle and

are holomorphic. T
written K. There is a g-dimensional vector space of sections of K which are locally of the
form w, = f,.(2)dz where f, is holomorphic, called abelian differentials of the first kind
[46].

We can decompose any tensor bundle on ¥ into a direct sum of line bundles. Given
a tensor C' on X, pick local coordinates and a metric of the form Eq. , then each
component of C will have a certain number of upper and lower z and Z indices. We can
use the metric to lower or raise upper or lower Z indices to lower or upper z indices,
respectively [47]. Then if a component C*"#,..., has ny upper z indices and n_ lower z

indices then it transforms under a map z — 2’ as [48] [47]

foot 02 \"t 7"~
C* %, > CF 7% = <> C* %, (2.46)
0z

The set of objects which transform like Eq. with ny. — n_ = n is a line bundle
which is denoted K™, and is equal to K®" in the Picard group of ¥ [35]. Although we
used a metric to remove the Z indices, the line bundle decomposition of the components
only depends on the off-diagonal structure of the metric, which is the same for all metrics
compatible with the complex structure.

Rotations in the (co)tangent spaces correspond to multiplication by complex phases:
dz = €%dz, 0 — e 199. The rank of a tensor is therefore characterized by its helicity: a

section C' of K™ transforms under rotation by 0 as [47, [33]
C — exp(ind)C'. (2.47)

If C is a tensor in K™ then h**0;K is a tensor in K "1, Motivated by this, we can define

!recall that a section of a fibre bundle 7 : E — B is a map s : B — E such that m o s = id.
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covariant derivatives [47, 39] (with the sign for V7 opposite from [35])

Vi:K" — K" Vi K™ — K", (2.48)
C— h*9C; C +— (W**)"0](hz:)"C]. (2.49)

The action of V7 on the helicity decomposition of a tensor is equivalent to the action of
the Levi-Civita connection V, on the tensor. Formally, the two operators in Eq. (2.48))

are the adjoints of each other with respect to an inner product on K™ [47]:
(Vi)l = —vit; (C1, Co)n = / d?*z v/ =h(hz:)" C;Cy . (2.50)

The unique genus 0 Riemann surface is called the Riemann sphere; it can be con-
structed as the one-dimensional complex projective space CP! obtained by quotienting
the homogenous coordinates (21, 29) € C?\ {0,0} by the equivalence relation (z1,22) ~
(Az1,Az9) for A € C* = C\ {0} = GL(1,C). The automorphisms of the Riemann sphere

can be written as invertible linear transformations of the homogeneous coordinates:

() ()-( () wwrn e
z 25 c z

Since we can scale all of (a, b, c,d) by an overall factor and get the same map on CP!, we
are free to choose e.g. ad — bc = 1; the group of these transformations is the projective
special linear group PSL(2,C). CP!can be covered by two coordinate charts: for zp # 0
we can use (21, 22) — z = 21/22 € C and for z; # 0 we can use (21, 22) — w = 22/2z1 € C.
In terms of the co-ordinate z, Eq. takes the form

, az+b

=z = — 2.52
S cz+d’ ( )

called a Mobius transformation or a fractional linear transformation.

Every compact Riemann surface ¥ of genus g has a simply-connected universal covering
surface 3 such that ¥ = % /T where I' is a group of M&bius transformations (this is called
the ‘uniformization theorem’) [41]. Y is either the Riemann sphere if g = 0, the complex
plane C if g = 1, or the upper-half plane H if g > 2. For g > 2, the Mé6bius transformations
in I have to leave the boundary of H, i.e. the real line R, fixed; therefore the entries in
the Mobius map must be real; a group of Mobius maps all satisfying this property is
called Fuchsian [49]. For g > 1, choosing a fundamental domain for the action of I' (i.e. a
connected subset of 3 containing one representative of each equivalence class of I') allows
us to find a single coordinate z covering all of 3.

One way to construct a fundamental domain is by fixing a point P on ¥ and finding
a set of 2¢g curves on X equivalent to the canonical homology basis which start and end
at P, with no intersections anywhere except P (see Fig. for g = 2), and then ‘cut X
open’ along the curves, obtaining topologically a polygon with 4g edges (see Fig. for
g = 2). The cutting procedure for g = 2 is shown step-by-step in Fig. 12 of [39]. Any

of the lifts of the polygon to ¥ is a fundamental domain for T'; in this case it is called a
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Figure 2.4: Cutting open a g = 2 surface to find a fundamental polygon.

fundamental polygon [50]. T' is isomorphic to the fundamental group 71 (3, P). Because of
the existence of the fundamental polygon, the homotopy class aflbflalbl e a;lbglagbg
is contractible, and therefore (3, P) has a non-trivial group relation.

Given any basis {¢;} of abelian differentials with periods around the a; cycles given
1)Z-j¢j which is dual to the a;

cycles; we can then use the integrals of w; around the b-cycles to define the period matriz

/ wj = 5ij ; / W5 = Tij . (2'53)
a; b,

7

by (7a)ij = fai ¢, we can find a basis {w;} given by w; = (7,

a

Tl‘ji

7;; is symmetric and has positive-definite imaginary part. These statements can be proved
by considering area integrals over the fundamental polygon and equating them by Stokes’
theorem to integrals over the homology cycles; the first follows by integrating w; Aw; which
is a total derivative and the second follows by integrating n A7 = —2i|h|?dz A dy where
n(z) = h(z)dz = 3°9_; ciw;(2) is some abelian differential [50, [35].

Given a Riemann surface ¥ with a choice of homology basis, we can define the jacobian

torus in terms of the period matrix 7;; [35]:
J(X)=CY/L;; Lr={(r-A)+m|nmeZ} =29 +17Z9. (2.54)

J(X) has a natural complex structure. After choosing an arbitrary base point py on X, we

can define a map (the Jacobi map) [35]
. P
oY J(3); pHLw% (2.55)
0

The 9-function is a section of a holomorphic line bundle £ — J(X) given by the

formula

HNZT) = Z exp (it - 7 71 4 27t - 2) (2.56)
neZ9

The ¥ function with characteristics is given by

-

Z ol (fi+@) T (7i+@)+2mi (7i+a)- (£+) (2.57)

neZI

<
L —
Sy
| I
—~
n
\1
N—
Il
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o —

= i@ a2 a(HE) 92 L 1. G4 b)), (2.58)

Its behaviour under translations in L, of its argument or its characteristics is given by:

0] 3]G reiaimin) = oA g [ (i), (250)
a—+m N a
19{ - } ZT :ezmn'mﬁ[_.} Z:7). 2.60
S e “en (2:60)
There is a function which is well-defined on the cut surface
F(p) = 0(Z+ Ppy(p) ; 7); (2.61)

according to the Riemann vanishing theorem either f(p) = 0 for all p € ¥ or f has g

zeroes p; satisfying

8y

g
+ Z Dpy (pi) = Apy (2.62)
=1

where the vector of Riemann constants &po € J(X) is independent of Z" [35].

From the Riemann vanishing theorem, it follows that any meromorphic function on 3

may be written in terms of its divisor D = 21 + ...+ zg —w; — ... — wq as [20]:
d
fo(p) = [0+ ®..(p) ;1) F(C + Bu(p); 7)1, (2.63)
i=1

where ¢ € J(X) is any point such that 19(5; 7) = 0; fp is independent of C.

A spin bundle on a Riemann surface is a line bundle whose square is the canonical
bundle K. A section s of the spin bundle lifts to a section s of the trivial bundle on the
covering surface 3. which transforms under the action of the covering group I as soT" = *+s
depending on the ‘spin structure’ associated to a homology cycle T' [46, [35].

We can define the prime form [44] which is a holomorphic (—1/2,0) x (—1/2,0)-
differential on ¥ x ¥ given by [20]:

_ G (JadiT) (=0 PR
B =g g gt 8~ (e BIE| e )" e

where [%] is any odd half-characteristic, i.e. a;,b; € {0,1} and 44 - b is odd. E(z,w)
is odd under swapping its arguments and its limiting behaviour is given by E(z,w) ~
(z—w)(dz)_%(dw)_% as z = w [51]. E(z,w) picks up a minus sign as z or w move around

an a; cycle; as z moves around the homology cycle b;, F(z,w) changes as [20]

E(z,w) — exp [ — mir;; — 27ri/ wi] E(z,w). (2.65)
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2.1.4 The classical Ramond-Neveu-Schwarz superstring

The bosonic string action Eq. can be extended to be supersymmetric on the world-
sheet. We need to introduce spinors on the worldsheet, so we need a representation p® of
the Clifford algebra satisfying {p®, p°} = —2n°#, where we will use a Lorentzian metric
with signature (—4) at first. In string theory there is variation in the sign convention for
the Clifford algebra; we follow [32] [I7, 52] and differ from [I8, 53, 54]. A suitable basis

can be constructed from the Pauli matrices 7'

0 —i 0 i
0 2 1 1
=72 = ; —irl = ; 2.66
reT (i o) pee (i 0) (2.66)

they are chosen to be imaginary so that the Dirac operator will be real. The chirality

3

matrix is diagonal p? = p’p! = 73, so the two components of a spinor have opposite

15 p3 _ 0
po— -1 Py=|* Py = . (2.67)
2 0 X+

where the projection operators are idempotent P? = P.. The sole generator of spin(1, 1)

chirality:

is pO1 = %[po, p'] is equal to the chirality operator p°! = p3; vectors transform under boosts
as
V% pa > V'V pa = exp(gpm)v“pa exp(—gpm) (2.68)
which is the same as setting
00 ol (00 4+ ) 00— ol s e (0 —ot); (2.69)

i.e. the vector representation is not irreducible but splits into two representations of op-
. . . . / 6 01
posite chirality. Spinors transform under the same boost by x — x' = e2”  x, so the two

components transform as

/ [4 / _90
X+ = X4 = €2X+; X— = X_ =€ 2x—. (2.70)

The worldsheet action for a superstring can be obtained from the action for the bosonic
string in conformal gauge Eq. (2.16)) by adding a Dirac term for a worldsheet Majorana-
Weyl spinor ; we set [55] [32]

1

4o’

S = / do dr (0 X0 XY — i¢" p 00t ) 0y (2.71)

where the conjugate Majorana spinor is defined as

B= e = (=it iy ). (2.72)
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Using
—it) p 0¥ = —1H O_p — i Dy Oy = 0o — 01, (2.73)

we can rewrite the action (Eq. (2.71)) as

1 . .
S = g do dr (04 X O_ X" + il o_g + " 04 Y nu . (2.74)
The equations of motion and boundary conditions for X* are the same as for the bosonic
string. To find the equations of motion for the fermionic fields ., we vary them as
gy — Yy + 0y, Let us consider the open string so o € [0, 7]. After integrating by parts

so all derivatives are on 1 instead of di, we find

=5 / d’T/ do’ MZ) o_ ¢++5¢“8+1/) )77;w

+ /_ S Z;Z (2.75)

ViV de%

The first line leads to the equation of motion:

Ditl = 0. (2.76)

The boundary term can be made to vanish by imposing 1/’ L= +9" at both ¢ = 0 and
o = m. The boundary conditions need to be imposed separately at each end because the
two endpoints of the string are out of causal contact so we can’t use a boundary condition
which mixes them [I§]. If we impose the same boundary condition at both ¢ = 0 and

o= e.g.

¢i(07 T) = QM (07 T) ) 1/’1(7% T) - wﬁ(ﬂ-ﬂ T) ’ (277)

then Eq. (2.76) can be solved by setting ¢ to be any periodic functions of 7 4+ o with
period 27. Fermions satisfying these boundary conditions are in the Ramond sector, and

they admit the mode expansion

Y (0,7) \[Z B e o), (2.78)

neZ

Alternatively, we can impose opposite boundary conditions for the two endpoints, e.g.

wi(oa T) = wﬁ(oa T) ) wi(ﬂ-v T) = —%Z)ﬁ (7[', 7—) > (279)

then Eq. (2.76) can be solved by setting ¢! to be any anti-periodic functions of 7 + o
with period 27. Fermions satisfying these boundary conditions are said to be in the

Neveu-Schwarz sector and they admit the half-integer mode expansion [32]

w:‘: o, 7. Z b 71r7r T¥0) (280)

TEZ+2
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Note that the statements about periodicity and anti-periodicity only apply to the (o, 7)
coordinate system because of the way spinors transform under diffeomorphisms.

Unlike our discussion of the bosonic string, we have not written the superstring action
in a reparametrization-invariant way, although it is certainly possible to do so by cou-
pling Eq. to two-dimensional supergravity [56] 57] (pedagogical treatments are in
e.g. section 5.8 of [32] or section 6.1 of [18]).

As we did in the bosonic case, let us take our action Eq. in which the worldsheet
has been split into chiral components and switch to a Euclidean signature as we did for
the bosonic string by putting 7 — —ir. Let us use the complex coordinates defined in
Eq. . The equations of motion for ¢ (Eq. ) become OY! = Y =0, i.e. Py
is holomorphic and +_ is anti-holomorphic. Rescaling the 1} ’s so they’re appropriately
normalized, the action Eq. then becomes [30]

1
2ral

Sy = / dzdz (OXHOXY — Loy — 10w ), . (2.81)
This form of the superstring action is called superconformal gauge. Now, the bosonic
string action in conformal gauge in complex coordinates (Eq. (2.37)) was invariant under
holomorphic changes of coordinates (Eq. (2.38))); for this to be a symmetry of the action
Sse we need ¥ to change under coordinate transformations as

W (9\7E L W _ (OF\7E
W () = (52) ) W= (%) e, es)
Each component of the worldsheet fermion in superconformal gauge is therefore an (anti-)
holomorphic section of a complex line bundle which transforms similarly to components
of a tensor (Eq. (2.46)) but with n = —1/2; in particular the square (in the sense of the
Picard group) of the line bundle which ¢/ is a section of is the dual of the canonical
bundle K.

Then we can change coordinates so the worldsheet is parametrized as the upper-half
plane, as we did for the bosonic string; we can achieve this by setting z — 2/ = €2,
Z — 7' = e . The form of the worldsheet Lagrangian is unchanged, however, v, in the
new coordinates includes a factor of (iz’ )7% because of its transformation properties. This
changes by a factor of —1 when moved in a closed cycle around 2z’ = 0; this means that the
fermions in the Ramond sector which were periodic on the strip become anti-periodic on
the complex plane, while fermions in the Neveu-Schwarz sector which were anti-periodic
on the strip become periodic on the plane.

Just as with the bosonic string, we don’t have to restrict ourselves to worldsheets with
the topology of a strip; we can add handles and cut out discs to get any oriented Riemann
surface. The only qualification is that we need to be able to define spinors globally, i.e. we
need the surfaces to admit line bundles whose transition functions are of the form in
Eq. (called spin bundles). In fact, every Riemann surface admits spin bundles [46].
Any spin bundle has a spin structure: the transition functions allow spinors which pick up
a phase of ¢ when transported around a closed curve as well as spinors which transform

trivially; the spin structure is equivalent to a prescription for how a spinor transforms
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when transported around any closed cycle. It can be specified by listing the phases +1
associated to each of the 2¢g homology cycles in any canonical basis, and each of these is

independent, therefore there are 229 spin structures on a genus g Riemann surface [35].

2.1.5 Super-Riemann surfaces

Is is useful to formulate superstring perturbation theory in the language of super-Riemann
surfaces [58, 59] 60].

The superstring action in superconformal gauge (Eq. ) can also be written using
a superfield formalism: we supplement the bosonic complex coordinates (z,z) with anti-
commuting (or ‘Grassmann’) coordinates (6, 0); we can write the coordinates in pairs as
z = z|0; Z = %|f. The two worldsheet fields X* and v/ can then be grouped together
(along with an auxiliary field) into a superfield X*, which can be Taylor expanded in 6, §

as:
XH(z,7) = X*(2,2) + 04 (2,2) + 0Y_(2,2) + 0ONH(2,%), (2.83)

. -2
where the Taylor series is exact because §2 =8~ = 0.

We can introduce superderivatives Dy and Dy defined by
Dy =8y +00,; Dy = 05+ 00z, (2.84)

where the derivative with respect to a Grassmann coordinate 6, dy, is also anti-commuting.
It effectively selects the coefficient of @, once 6 has been anti-commuted to the left-hand-
side of the expression. Dy and Dy act on the superfield Eq. 1D to give

DoX* = ¢t + GN* + 0 OXH + 600y | (2.85)
DoXH =yt — ON* + §OX* + 060y, . (2.86)

We can introduce the Berezin integral for integration of a superfield over fermionic coor-

dinates:
/[d”z’de dg] (f(]o(zz) + 9f10(22) + gf()l (ZZ) + 59f11(z1)) = /dnz fll(zz-) , (2.87)

i.e. the integration over df df picks out the coefficient of #9. But the coefficient of 66 in
DyXHDyXV Nuw is equal to the z-integrand of the string action in superconformal gauge
(Eq. (2.81)) with an auxiliary term, i.e. we have

/ [d22|d%0] DyXF DpX,, = / A%z (OXHOXY — PHOYY, — Y O” + NFENY) . (2.88)
but N# doesn’t interact with any of the other fields so we can set it to 0 with its equation

of motion [I7]. The string action Eq. (2.81)) can then be rewritten as

1 _
S = / [d22|d%0] DpX*DpX,, . (2.89)

2ma!
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The equation of motion for X* in superconformal coordinates is DyDyX* = 0, whose
general solution is X#(z,Z) = X1,(2)+i0¢ 1 (2) + XRr(Z)+i0y_(Z), i.e. it splits into analytic
and anti-analytic superfields [61]

X" (z,2) = X{.(z) + X3(2); X1.(z)
X}(2)

X{'(z) + 109! (2); (2.90)
X§(2) + 169" (7). (2.91)

We have seen that because the bosonic string action in conformal gauge (Eq. )
is unchanged by holomorphic changes of coordinates, it is well-defined on a Riemann
surface. By analogy, we want to find a class of objects with potentially more complicated
topology where the superstring action in superconformal gauge (Eq. ) is manifestly
well-defined. It turns out that the correct setting is super-Riemann surfaces (SRS).

A SRS is a type of 1]|1-dimensional complex supermanifold, i.e. it can be described
locally by one commuting complex coordinate and one anticommuting complex coordinate;
typically we write the coordinates of a point in some chart in the form z|6. On a super-
Riemann surface X, there is some additional structure: the tangent bundle contains a rank
0[1 sub-bundle D, such that for any section D of D, at every point on ¥, D? = %{D, D} is
linearly independent of D [60]. Concretely, if z|0 are local coordinates on X, then {9, 0y}

is a local basis for 7Y and we can define

Dy =0y + 00, . (2.92)
Since we can expand any function f as f(z,6) = g(z) + 6h(z), we have

DDy f = 0. f (2.93)

so D2 = 9,, which is linearly independent of Djy. In fact, this choice of D is quite general:
for any section D which satisfies D? = D nowhere, we can change co-ordinates such that
D is of the form Dy (see section 2.1 of [60]).

Taking advantage of this, we can choose only to use coordinates in which D is spanned
by a section of the form Eq. ; we call these superconformal coordinates. We can find
an analogue of the Cauchy-Riemann equations which the transition function must satisfy
to be superconformal. Suppose that é\é — 2|0 is some transition function to change
co-ordinates between overlapping charts. Let f be a function on the intersection of the
charts, then by the chain rule we have D;f = (Dy0)0yf + (Djz)0.f. We need this to be
proportional to Dgf; this will hold if

Déz = (9Dé9, (2.94)

which is the required condition for a change of coordinates to be superconformal.

If 2|§, z|6 are two superconformal charts on a SRS, then the two volume forms
[d?]d@]D@f and [dz|d0]Dyf are identical, i.e. their Berezin integrals are the same (see
e.g. section 2.4 of [60]). From this it follows that the superstring action Eq. is

well-defined globally on a SRS, where the integration variables are any local choice of
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superconformal coordinates.

2.1.6 Super-projective transformations

The simplest compact super-Riemann surface is the super-Riemann sphere CP''. This
can be defined in terms of homogeneous coordinates in C2' by the equivalence relation
(21, 22|C) ~ (Az1, Az2| @) for non-zero complex A\, where the bosonic coordinates z; and zy
are not allowed to vanish simultaneously. It can be covered by two coordinate charts: for
zg # 0 we can use z|f = %\% and for z; # 0 we can use w|y = ;—?\% Both coordinate
charts are superconformal, i.e. Eq. is satisfied by the transition function between
them.

The transition function between the two charts is an automorphism of CP1|1; other
automorphism are generated by super-conformal versions of translations and dilatations

given by
2|0 2 —a—0alf — ;2|0 — N2z (2.95)

From these we can generate the full group of automorphisms, the orthosymplectic group
OSp(1]2) [60] (also called OSp(1,1) in e.g. [39]), which can be realised by matrices of the

form

a bla
S = c d|p (2.96)
v e

where the 5 bosonic and 4 fermionic variables are subject to the 2 fermionic and 2 bosonic

constraints,

(- )(): o o o

so the group has dimension 3|2.

If we define a skew-symmetric bilinear form (-, -) on the homogeneous co-ordinates by

(2,y) = 2192 — 2251 — OO (2.98)

then OSp(1/|2) can be characterized as the subgroup of GL(2|1) which preserves (-,-) [60].
We can find an OSp(1]|2) matrix taking u = (uj,u2|f) and v = (v1,v2|¢) to points

equivalent to (0,1]0) and (1,0|0) respectively; one such matrix is

U —U1 6
ﬁ V2 —U1 ¢ . (299)
u,v usp—v20  v10—uid __b¢
Viey)  (av) Viwy) Viuv)

1
Fuv =

We have one bosonic degree of freedom remaining; we can stipulate that a point w =

(w1, w2|w) is mapped to a point equivalent to (1,1|Oywy) where there is no freedom in
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choosing the fermionic co-ordinate, which is therefore a super-projective invariant of u, v

and w. The image of w under I'yy is

1

V(,v)

A general dilatation of the superconformal co-ordinates corresponds to the OSp(1]2) ma-

T'yww =

O(v, w) + d(w, u) + w(u, v) +W9¢), (2.100)

(u,v)

((W,u>, <W,V>‘

trix

: (2.101)

which leaves invariant the points (0,1]0) and (1,0/0). We may use a transformation like

this to scale the bosonic coordinates of I'yyw as desired, obtaining

e

giving us an explicit expression for the odd super-projective invariant O, z,z4:

Orinans = C1(z2,23) + (2(23,21) + (3(21,22) + (1 (2 (3 7 (2.103)

V (21, 22) (22, 23) (23, 21)

where z; = z;|(;, as in Eq. (3.222) of [39).

2.2 Quantization

In this section we discuss the quantization of the bosonic strings and superstrings we
discussed in section We use the ‘first-quantized’ path integral formalism in which we
treat the embedding functions X# and the worldsheet metric h,p as integration variables.
We recall facts about conformal field theory (CFT) and show that the BRST quantization
procedure can be implemented by coupling the worldsheet metric to a ghost CFT.

Use has been made of the lecture notes by Friedan [48, 58], Dixon [30], Alvarez [47]
and Tong [21], the textbook by Polchinski [62] and classic papers by Belavin, Polyakov
and Zamolodchikov [63], Friedan, Martinec and Shenker [61] and D’Hoker and Phong [39].
Quantization of the worldsheet action was first carried out by Polyakov for the bosonic

string in [29] and the superstring in [55].

2.2.1 The gauge symmetry of bosonic string theory

We’ve seen in section that the bosonic string is described by an action (Eq. (2.6))
which is a functional of X*#, which describes the embedding of the string worldsheet into
spacetime, and h,g, the metric on the worldsheet. In section we discussed how the
action can be generalized to worldsheets with handles and additional boundaries. As in
any quantum theory, we can compute observables by evaluating a path integral over all

possible ‘histories’, which in this case means taking some fixed abstract two-dimensional

29



manifold ¥ (with a fixed choice of coordinates), and then integrating over both the space
& of embedding functions X* and over the space .Z; of worldsheet metrics h,3. The path
integral includes a sum over all possible topologies of the worldsheet. In the case of closed
string worldsheets, this is equivalent to a sum over genera (i.e. number of handles) but
there are more topologies to sum over when boundaries are permitted.

We have seen that the action Eq. is invariant under both the group of reparametriza-
tions of the surface 2(X) (Eq. (2-13)) and the group of Weyl rescalings ¢'(X) (Eq. (2.11))).
This means that there is the possibility of over-counting: one pair of functions (X* h,g)
on ¥ may be equivalent to a different pair of functions (X* Bag) on ¥ up to the action of
a reparametrization of X; in this case we want to ensure that only one from each equiv-
alence class is counted. Moreover, we want to ensure that if two metric on a surface are
related by a Weyl scaling then only one of them is counted. The gauge group is then the
semidirect product G = €' (3) x 2(X) [64]. The integration has to be carried out over the
space & X My/(€(X) x Z(X)).

Diffeomorphisms generated by vector fields £% constitute only the identity component
20(%) of the full group of diffeomorphisms. %,(X) is a normal subgroup of Z(X) and
the quotient is called the mapping class group (2(X)/Zy(X) = MCG), which is a discrete
group [31, 52]. The quotient of the space of genus-g metrics .#; by ¢(X) x Zy(X) is
called Teichmiiller space T4. Teichmiiller space over-counts since we are only interested in
inequivalent surfaces, because we have quotiented only by the identity component of the
diffeomorphism group %p; really we should have divided .#, by the full group of diffeo-
morphisms which would leave us with moduli space My = T4/MCG instead of Teichmiiller
space. Roughly, moduli space is the space of complex structures on a surface with a given
topology [31], 39].

The integration measures on & and .#, were constructed by Polyakov in [29], with
developments in [47] for open string worldsheets; more details are given in [48], 33 [39].
The measures are constrained by ‘ultralocality’, i.e. independence of the derivatives of hqg
and 6 X*. We will not look at the construction of the measure but just make use of the
results.

The path integral for bosonic string theory is written, then, as an integral over & x .#,

divided schematically by the ‘volume’ of the gauge group:

Z = /Dhaﬁ DXH vm(%(z)lx @(E))efsbos[x,m (2.104)

We can denote a general gauge transformation as ¢ and we can write the corresponding
change of metric as hog — hgﬁ. We need to choose a particular gauge for our compu-
tations, such as the conformal gauge (Eq. (2.17)), by specifying its functional form; in
general we call our arbitrary chosen metric the fiducial metric flag.

The fiducial metric ﬁag is some unique way of choosing a representative for each class
of physically equivalent metrics, so integrating over the space of all fiducial metrics is the
same as integrating over the space of all physically distinct configurations.

Formally, we can gauge fix to get the fiducial metric by inserting a functional Dirac -

function. This would change the value of the path integral so we need to include another
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term to cancel it. If we were able to integrate the J-function over a set of physically
equivalent metrics then we would be able to insert a factor of unity, but it is not clear how
to perform this integration in general; we actually have to perform the integral over the

gauge group:
. 1

DCS(hos — S ) = 2.105

[ PCothay =) = 5 (2.105)

which defines App[h], the Faddeev-Popov determinant evaluated for a metric hqg.

For any gauge transformation ¢ we have App[h] = App[h¢] so App is gauge-invariant;
this follows from the gauge-invariance of the integration measure and of the § function.
We can use this to insert a factor of unity, 1 = App[h] [ D(6(hap — ﬁiﬁ) in the path

integral

p A 1
Z:/DCDhDX AFP[h]é(hagfhiB)Vol((g(E) )

e Svos[X | B (2.106)

so we can perform the h,g integration and the ¢ function replaces each instance of hqg
s RS
with hg, 5
—S

o 1 A
Z = / D¢DX" App[ht] e “bortxic) (2.107)

but since both App and Spes are gauge-invariant we can replace izg 5 with fzag everywhere

so only the fiducial metric appears

~ 1 2
Z = | D¢DX" Applh ~Sbos[X,A], 2.108

/ ¢ welhl Gore®) < 2m) (2.108)
Note that nothing in the integrand now depends on the gauge transformation (, so the
J D¢ path integral is now just a constant factor corresponding to the number of physically

equivalent configurations; it cancels 1/Vol(%'(X) x (X)) and we are left with
Z = / DX" App|h)eSvosl XA, (2.109)

This is an integral over physically distinct configurations with a canonical choice of
fiducial metric h. It is weighted appropriately by App, which it wouldn’t be if we had
naively specified the functional form of the metric and integrate over field configurations.

It still remains to compute App.

2.2.2 The Faddeev-Popov determinant

The next step is to compute the expression in Eq. (2.105) for AEFI, [h]. Considering
only infinitesimal gauge transformations { close to the identity, we can write a first-

order expansion gfw ~ ﬁag + 5ﬁa5 where 5ﬁa5 can include both infinitesimal diffeo-

morphisms (Eq. (2.13))) and Weyl transformations (Eq. (2.11))) of the infinitesimal form
hag = (1 4 2w)hqg, giving

Shap = 2whag + Vals + Vs . (2.110)
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Inserting this expression for hog — ﬁiﬁ in the § function in Eq. (2.105)), we can write

the integral over all gauge transformations as a functional integral over all infinitesimal

diffeomorphisms ¢¢ and Weyl transformations w, then
A}?}l,[iz] = /Dw Dfa(S(Qw;Lag + Vaés + Vgéa), (2.111)

This is like integrating over the Lie algebra of a Lie group except the gauge group in this
case is an infinite-dimensional space of functions.

We may replace the J-function with its integral form obtaining
Apblgl = / Dw DE* DB exp <2m / d*o\) —h 8% (2whap + Vaés + vﬁga)> , (2.112)

where 5% is a rank 2 tensor on the worldsheet which multiplies Baﬁ SO we can assume it

is symmetric. Performing the Dw integral we obtain a ¢ function

/Dwexp <2m/d2m/—f}ﬁaﬁf}a5 2w> = 5(28%hag) , (2.113)

which fixes 37 fLag = 0 so we take 5P to be traceless. We then replace the 5% integral

with one over all symmetric, traceless BB

Applh] = / Dw DB exp <4m / dza\/—»fz pes Vav5> (2.114)

where we have used the symmetry of 3% to write BQB(VQEB + Vg&a) = 28V 5.
We have an expression for Ags[h] but we need to invert it to get App[h]. This can
be done with the simple trick of changing the integration variables B and £ from

commuting to anticommuting ghost fields: let
Bap = bags; £ — e, (2.115)

giving the path integral

App[h] = / Db De® exp(iSenlb, e, i) (2.116)

where )
Senlb, ¢, h] = 2/d20 V=hbas V. (2.117)

7

In conformal gauge (Eq. (2.15)) this is particularly simple:
1 _ _
Sgh = %/sz (0220 ¢ + bzz0F) (2.118)

which doesn’t depend on the Weyl scaling factor w.
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Then the Polyakov path integral is given as
Z[h] = / DX Dbeg De e Snos M= Sanost hubie] (2.119)

RNS superstrings

For superstrings, the situation is analogous. The full worldsheet action now depends not
only on the metric h,g but also on its superpartner, a spin—% gravitino y, (see e.g. §3.1 of
[39], §6.1 of [18], §5.8 of [32] or §4.1 of [61]). To write the worldsheet action in the form of
Eq. requires choosing a gauge slice for both the metric and the gravitino; the gauge
slice we have chosen is called the superconformal gauge. Just as the bosonic string had a
residual Weyl symmetry (Eq. ) even after fixing conformal gauge (Eq. ); so the
RNS superstring has a residual superconformal symmetry even after fixing superconformal
gauge. This can be seen from the form of the action Eq. which is invariant under
superconformal changes of coordinates.

Just as the path integral for bosonic string theory can be reduced from a redundant
integral over all worldsheet metrics h,g to an integral over the finite-dimensional moduli
space of Riemann surfaces, so the path integral for RNS superstrings can be reduced from
a redundant path integral over worldsheet metrics h,g and gravitons x, to an integral over
the finite-dimensional space of SRSs with a given topology, called super-moduli space 9.
Super-moduli space is a complex supermanifold in its own right (to be more precise, it’s
an orbifold because the mapping class group has fixed points). The super-moduli space of
compact SRSs of genus g > 1, M, has complex dimension 3g — 3|2g — 2 [65].

We can replace the integral over all metrics and gravitinos by an integral over a gauge
slice multiplied by a Faddeev-Popov determinant, as for the bosonic string, but for the

superstring the requisite ghost fields are superfields. For the analytic sector, let [61]
C? = c# + 647, B,y = B9 + 0b.., (2.120)

with ¢~ and EEE defined similarly. Since 6 is anti-commuting and so are b,, and c?, it
follows that 7Y and /3,9 must be commuting variables. The ghost action for the superstring

becomes

1 — = —z
Segn = 5 /[d2z|d29] (B.9DyC* + B3DyC"), (2.121)
’/T

writing this out in terms of the component fields we find

) B S
Sen = o /d22 (b2:0¢" + B9 07" + b20¢" + B507), (2.122)

which reduces to the ghost action for the bosonic case (Eq. (2.118])) when we set the 3,
fields to 0.
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2.2.3 Conformal Field Theory

As we have seen in section the classical bosonic string can be described in complex
coordinates by an action of the form Eq. which is invariant under conformal trans-
formations of the form Eq. . We want to consider the theory obtained by quantizing
this action, i.e. by promoting the worldsheet X* field theory to a quantum field theory.
Note that this is a ‘first-quantized’ version of string theory [61] in the same sense that
quantum mechanics can be conceptualized as a 1-dimensional QFT on the worldline of a
particle; we will not discuss the second-quantized theory of strings (known as string field
theory). Because of the conformal invariance of the action, we use the specialized language
of conformal field theory (CFT) which is more useful for theories with this symmetry [21].

In the string action we are using Eq. there is a worldsheet metric h*? which,
although it has a less obvious physical meaning than the fields X*, must still be integrated
over in the path integral. The fundamental objects we will be interested in calculating are

expectation values of operators evaluated with the path integral:
(01(21,71), -, On(2n, Zn) ) = /Dhaﬁ DXH ¢~ Sbos (ol(zl,zl), . on(zn,zn)) . (2.123)

Here the local operators inside the correlation function are understood to be radially

ordered i.e. |z1| > |z2| > ... > |z,| [30]; this is equivalent to T-ordering and then changing

to radial coordinates Eq. (2.45]).
We can find the propagator for X#. Writing the conformal gauge bosonic string action

Eq. 1} in cartesian coordinates as Spos = ﬁ J d?0 9, XH0 X s WE can use

0 —Shos YV — o Shbos v §2 1 S '€ v
W[e X (0—2)] —e (n 0%(01 = 02) + 5= 0ad" X (01) X (ag)), (2.124)

along with the fact that the path integral of a functional derivative vanishes to get [21]
(0,0°XH(01) X" (02)) = =21/ 6% (01 — 09) (2.125)

which is a partial differential equation for the propagator (X*(o1), X" (02)) whose solution

on the complex plane is [2]1]

/

(XP (1), X¥(02)) = &/ Glor, 00)n"” = = log oy — a5 (2.126)
The scalar propagator in complex coordinates is given by G(z,w) = —log2|z — w|? ~

—log(z — w) — log(z* — w*). On a higher-genus Riemann surface the propagator is given
in complex coordinates in terms of the prime form (Eq. (2.64])) by

G(z,y) = —10g|E(l“»?/)\2+27r(Im/mcD') - (Im7) ™t (Im/mﬁ). (2.127)
Yy Y

Operators evaluated at nearby points can be expressed in terms of the operator product

34



expansion (OPE) [30]

0i(2,2)0;(w,m) = > Ci*(z — w,Z — W)Op(w, ). (2.128)
k

the sum ranges over all operators in the theory and the operator product coefficients C’ijk
are determined by the behaviour of the fields under fractional linear transformations. In
d = 2, the coefficients in the OPEs are of the form C;;* = ¢;;* (2 — w)®(z — w)? for some
a, B and constants c¢;;* [30].

Some operators are classed as primary depending on their OPE with the stress-energy
tensor: if it is of the form [30]

TX ()0 (w, ) ~ (Z_hw)2(’)(w,w) + W b (2.129)
T (2)0(w, @) ~ —"— 0w, m) + 20w (2.130)

(z —w) zZ—w

“...” indicate non-singular terms which don’t contribute to contour

(where the ellipses
integrals) then O is called a primary operator of weight (h,h). X*(z,%) is not a well-
behaved conformal field because of the logarithmic behaviour of its two-point function,

Recall that we saw in Eq. that Weyl invariance implied that the stress-energy
tensor is traceless, TX%, = 0; this is the defining feature of a conformal field theory. It
may hold at the classical level but fail due to quantum corrections as in, for example,
Yang-Mills theory. We will see that tracelessness does fail for the X* CFT in general but
in the critical dimension it cancels the contribution from the ghost CFT.

Any holomorphic field of weight h (i.e. one that transforms as in Eq. (2.46) with

n4+ —n_ = h can be Laurent expanded as [30]
1 dz
—n—h o
> A h, A, = %jle_n_hA(z), (2.131)
n€Z—h

a similar statement holds for anti-holomorphic fields of weight h being expressed as Lau-
rentz series in z.

We know that X* is the sum of a holomorphic left-moving and anti-holomorphic right-
moving part (Eq. ), from which it follows that X} and X/ are holomorphic and
anti-holomorphic, respectively, and therefore they admit Laurent expansions in z and Z,

respectively. Since X* is a worldsheet scalar, 9, X* has weight h = 1. We can write

OXY(z) = —iV2a/ Y akz7"; IXp(z) = —iv2d Y akz (2.132)

nezZ nez

We can write down expressions for o, and &), using contour integrals around 0: we get
[30]

" o
0X7(z)2"; ab =

It H
F Qm aX (2.133)

2 27r1

o
o, =
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Figure 2.5: Radial-ordered commutators with (anti-) analytic fields expressed as a contour
integral.

These have the commutation relations
[ o] = Mg on™™ - (2.134)

TX and T are actually not examples of primary fields themselves; for a generic CF'T,
TX satisfies [30]

c/2 N 27X (w) N 0w TX (w) N

TX(Z)TX(W) ~ (z—w)4 (Z_w)z Y —w

(2.135)

and there is an analogous OPE for T~ with itself. In the quantum theory, 7% no longer

transforms as a tensor but as a ‘projective connection’ with [20]
T'X(2)(d2)? = TX(2)(dz)? — 1%{2«’; 2}dz)?, (2.136)

where { ; } is the Schwarzian derivative which can be expressed in several equivalent
ways [66, 4T, 67]

f/// 3 f// 2 f// | f// 9 1 \”
= S = (Y Yy = v () e
where all the primes indicate derivatives with respect to z. {, } satisfies the following chain
rule: {gf, 2} = {g, f(2)}(f'(2))?+ {f, 2}, and vanishes for M&bius maps f(z) = ‘C’zzis as is
clear from the last formula in Eq. since 1/1/f(2)  cz + d.

We saw in section that conformal transformations generate conserved currents
(Eq. (2.43)); it follows from Stokes’ theorem that there is a radially conserved charge Q¢

given by a contour integral [30]:

Qo= 5 § 3eT¥ ) + o, § 5 Ze@T (), (2.138)
where the contours depend on where @ () appears in the radially-ordered correlation func-
tion (i.e. they should have all of the insertion points of operators to the right-hand-side
of Q(¢) on their inside and all of the insertion points of operators to the left-hand-side of
Q(e) on their outside).

The commutator of an analytic (or anti-analytic) field like 7% (z) with another field
¢(w,w) (inside a radial-ordered correlation function) can be written in terms of a contour
integral around w: see Fig. [30], we have
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Q0w )] = o § SZDT o m) + , § ZeAEAT @otwm). (2139)

27 o |- 27

T(z) and T (%) are fields of weight (2,0) and (0, 2) so they can be Laurent expanded as in

Eq. (2.131) as [30]

TX(2) = LY LX = }1{ 42 X () 41 (2.140)

m 271
nez

and similarly T(Z) can be expanded in terms of L,. Evaluating the radially-ordered

commutator as in Eq. (2.139)), we can use the OPE for T'(z) (Eq. (2.135)) to get

c
(L35, LX) = (08 = )+ (m = m) Ly (2.141)
the fi,i’s satisfy the same algebra and commute with the L,,’s. This algebra is called

the Virasoro algebra. Similarly it can be shown that any analytic field ¢(z) which can be
Laurent expanded in A,, (as in Eq. (2.131))) satisfies

[LX, An] = ((h—1)m —n)Apin . (2.142)

2.2.4 BRST Quantization

Theories with a gauge symmetry, i.e. theories whose mathematical description is redundant
in that there are many equivalent ways to describe the same physical data, actually admit
a deeper symmetry which was found by Becchi, Rouet and Stora [68] and Tyutin [69].
The analysis was first applied to the quantization of strings in [70] and [71].

Suppose we have a quantum field theory invariant under some local symmetry. Call
the fields ¢; where 7 is a general label; it can distinguish between different types of fields.
In our case both X# and g,g are together the ¢;. There is a symmetry group which we

parameterize with the infinitesimal transformations J, which satisfy an algebra
[0as 5] = a0y (2.143)

(this is like how the infinitesimal elements of a Lie group—equivalently the tangent space
at the identity—automatically form a Lie algebra with the commutator bracket but in our
case the space of symmetry parameters is infinite-dimensional). A general group element
is denoted by the linear combination €*§,. Note that the index « here is an abstract
index representing the spacetime indices u, ..., the worldsheet indices «, 3,... and the
worldsheet coordinate o all at the same time. An expression with Einstein summation
requires integration over the worldsheet coordinates variables.

We gauge fix using a functional F4, where again the index A can depend on the the
worldsheet coordinate, to impose a gauge condition F' A(qb) = (0. For example, in the
lightcone gauge this imposes constraints on X*, X~ and g,s; in conformal gauge all

constraints are imposed on gug.
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We can impose the constraint by inserting a J functional into the path integral:
S(FA(¢)) = / DBy exp(iBaFA) (2.144)
and then the path integral becomes
/Dqﬁi exp(—S)% — /D@DBADBADCQDZ)A exp(—S + iBAFA — byc®3, F4) (2.145)

where the factor
/DbADca exp(—bac®d,F4) (2.146)

is the general expression for a Faddeev-Popov determinant. We can think of this as
a single action S" = S 4 Sgauge + Sghost Where we have defined a gauge-fixing action
Sgauge = —1BsF A and a ghost action Sgpest = bac®do A The new action S’ is integrated
over the original fields ¢;, the ghost fields by and ¢®, and a new field ‘conjugate’ to F4,
By. S’ has a an additional symmetry, Becchi-Rouet-Stora-Tyutin (BRST) symmetry; it

is invariant under the BRST transformation §p whose action on the fields is given by

Spbi = —iec®Snd; (2.147)
5pBa = 0 (2.148)
Spba = eBa (2.149)
dpc® = %6]’“570507. (2.150)

Now because the ¢; and B4 are taken to be commuting whereas b4 and c® are anti-
commuting, it is necessary for € to be anti-commuting so that these transformations pre-
serve the commutation type of the fields.

Note that the original action S is invariant by itself under this action because it is just
a gauge transformation paramaterized by ec®, and the action is gauge invariant.

The variation in the other two terms cancels out; this follows from the anti-commuting
properties of ¢® and the Lie algebra axioms the structure constants satisfy. Therefore the

BRST variation is nilpotent,
dp(dg) = 0. (2.151)
The other important property of the transformation is that [72]
55(baF™?) = ie(Sgauge + Sghost) - (2.152)

Suppose we make an infinitesimal change in the gauge-fixing functional F4, F4 —

FA 4+ e5FA. S does not depend on F so it does not change, and S’ changes as
S" 5 S + €5(Sghost + Sgauge) = —i0p(badF*) (2.153)

where we have used Eq. (2.152]). Then the change in the matrix element between an initial
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and final state (f|i) can be shown with a path integral manipulation to be given by
ed(fli) = i(f10B(baGFM)]i). (2.154)

We define a conserved BRST charge () whose anti-commutator gives the BRST trans-

formation

ie{@Qp,Y} =0p(Y) (2.155)

so we have

5(fli) = —(f|e{ @B, baSF}]i). (2.156)

We want amplitudes to be stationary under a small variation of the action so we stipulate

that physical states will satisfy

('|e{@QB,bad FA}w) = 0. (2.157)

We need this to hold for arbitrary variations § F#; this means it is necessary to enforce

@slY) =0 (2.158)

for any physical state [}, i.e. we enforce that physical states must be BRST invariant, or
closed. Physical states defined in this way form a subspace of the Hilbert space ¢ called
Hlosed -

If we change our gauge choice F4 then the functional dependence of the hamiltonian
changes, but we want to be able to alter our gauge choice while Jg remains conserved. In

particular we want Qg to commute with the variation in the action
[QB,{@B,badF*}] = [Q,ba6F] = 0 (2.159)

and this holds for arbitrary 6F4 only if Q% = 0. We can’t have Q% = constant because
@B has ghost number 2.

We can check that the action of g on the fields given above is indeed nilpotent using
the anti-commutation property of the ¢* and the Lie algebra axioms satisfies by f“3.,.

The nilpotence of @p means that from an arbitrary state |x) we can get a physical
state @p|x), which is automatically annihilated by @p. We call a state of the form Qg|x)
exact. Exact states form a subspace of the Hilbert space called #2yact.

The hermiticity of (g can be used to see that an exact state is annihilated by any

physical state (including itself or any exact state) |1)) since

®|Qslx) = (Qsl¥)! [x) = 0. (2.160)
=0

Then if |¢) is any physical state, [¢)') = 1) + @B|x) for any state |x) is also physical, and
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moreover it has the same inner product with any other physical state |¢) as |¢)) does:

(¥ = (Clv) + (ClQsIx) = (C¥). (2.161)
A_/_/

=0

Then the two states [1) and [¢) are physically equivalent, and we can define an equivalence

relation ~p by [¢1) ~p |1)2) whenever |13) = |¢1) + Qp|x) for some |x).
The space of physically distinct states is then

%losed

JBRST = H | ~B= 7

(2.162)

When we have a nilpotent operator such as QJg, the image of the operator is a sub-
space of its kernel, and the space of closed forms quotiented out by the exact forms is
called a cohomology group. Then the space of physical and physically distinct states is a

cohomology group.

2.2.5 BRST quantization of the string

As discussed in section the gauge symmetry of the bosonic string can be fixed by the
introduction of a Faddeev-Popov determinant, expressed in terms of a (b, ¢)-ghost system
on the worldsheet.

As we did for the matter fields in Eq. , we can define a stress tensor for the
ghost fields in terms of the functional derivative of the ghost action with respect to the
worldsheet metric, obtaining

de/ 5580

h

we get a symmetric traceless tensor given in the conformal gauge as [17}
T = o/ (cdb + 2(dc)b) (2.164)

with a similar equation for 7% in the case of the closed string. Imposing the equal time
anti-commutation relations in light-cone co-ordinates {b, (o, 7),c* (0, 7)} = 276(c —0’),
it can be found that in complex coordinates the radial quantization of the (b,c) system

can be expressed as

Cn, by,
c(2) = Z =17 b(z) = Z 2 {emsbn} = dmino, (2.165)
neZ nez

with all other (anti-)commutators vanishing. As we did for the matter stress-energy tensor
TX in Eq. (2.140), we can expand T8"(z) in modes as

d
Toh(z) = ¥ L8 2, b = 7{ 2 qe(z)m (2.166)
nez
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The mode expansion of L8" is

LEM = " (2m — n)bpyncon, (2.167)
neZ
which satisfy the algebra
1
(L&}, L8] = (m — n) L&' + sm = 13m*) im0 - (2.168)

When L8 and L:X are combined to give a single operator L,, defined as

L =L + L8 — 6,0, (2.169)
the L,,’s satisfy the algebra
D 3 1 3
[Lim, Lp) = (m —n) Lyt + E(m —m)+ g(m —13m?°) + 2m. (2.170)

In the case D = 26, the central term vanishes. The structure constants of the symmetry
algebra therefore have a simple form and we can construct the BRST charge () g for bosonic
string theory. Whenever we have an action with a gauge symmetry generated by elements
of a Lie algebra spanned by K; with structure constants [K;, K;] = fiij &, with ghosts
b; and ¢! which transform in the adjoint and dual-adjoint representation, respectively, we

can construct a nilpotent operator [17]
i Lk
Q:CKZ‘— ifw chbk (2171)

The Virasoro algebra generated by the L,,’s is a suitable candidate for this Lie alge-
bra when D = 26, with the b, and ¢, modes transforming appropriately. Then we can

construct the following BRST operator for the open bosonic string:

1
Q= Z L)fmcm ~ 3 Z (m—mn): come_pbmin : —Co (2.172)
meZ mneZ
1
=3 (X, + §L§hn — 8p0)Cn (2.173)
nez
d 1
- 7{2:1 : c(TX + 5Tgh) : (2.174)
d 1

The space of physical states can be calculated from this, see e.g. section 4.3 of [62]. States
are written in terms of the SL(2, R)-invariant state, |0;0), which is annihilated by o, for
n > 0, by ¢, for n > 2 and by b, for n > —1. Then the states

k) =: X : ¢1]0;0) (2.176)

with k2 = —i are (Q-closed; these correspond to the tachyon of the theory. At the next
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level, the massless excitations which are the ones we are interested in from the point of
view of studying QFT in the o/ — 0 limit, before computing the BRST cohomology there

is a 28-dimensional vector space of states spanned by
STy = Na |k) ; 92) = c1lk); |55) = b_1]k) ; (2.177)

where 1 = 0,...,25 and now k? = 0. Let us find the cohomology of Q. To begin,
we compute Q|S]'). Using the expression for @ in Eq. (2.175)), we can begin with the
contribution coming from the T% term. Using the mode expansion of T, this term

becomes
27{% : Zm Q- am < 0 [R) (2.178)

From the commutation relations Eq. (2.134) we can calculate [ay—p, - an, @] = (61 +
5g_n71)04211 which we can insert in Eq. (2.178|) yielding

dz c(z dz c(z
Z% 2mi Z£+2 llk T3 Z% 2 ZZ-‘:—Q CO0p_p Qg ’k> . (2179)

Let us calculate the first term in Eq. (2.179). From the mode expansion of the string
coordinates X* (e.g. Eq. (2.7.26) of [62]):

/ I

1
XH(2,7) = a* — id/pHlog | 2| + i(%)§ Z a—m(z_m +z7 ™M), (2.180)
m#0 m
we can calculate
/L
okt ;e X(w) ] = (%) 2 (W™ + TYEH ;X @) (2.181)
Using this, the first term of Eq. (2.179) becomes:
N o kx ANz g
el Ze:c_écl((» (W' + T L)kH +o/;_1> ‘w20|0;0>. (2.182)

l—1 —

For ¢ > 2, the summand vanishes because 0‘2‘71 annihilates the vacuum or because w
0. For ¢ = 1, the oscillator mode a’;_l o p* annihilates the vacuum but the other term

doesn’t vanish; indeed it is equal to

N a3
kM1 S 2.183
3 (5) #1s) (2189)
For ¢ < —2, ¢_, annihilates |0;0) and for £ = —1, ¢_pc; = 0. The case ¢ = 0 remains;

starting from Eq. (2.179)) it is easy to check that it is given by %co|5f ) and we will see

that it cancels a contribution from the 78" term of Q|S%).
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The second term in Eq. (2.179)) can be calculated with the use of

S oyt k) = cl<[: g - a5y @R X (R X)L,y )‘ |0) (2.184)

w=0

The second term on the right hand side of Eq. (2.184]), when inserted in the second term
of Eq. (2.179)), gives

/;[Zc_gaulcl cef Xy 0, 1]0;0) =0 (2.185)
Ln

which vanishes because at least one of c_yg, O/Z_n, o, must be an annihilation operator.

To evaluate the commutator in Eq. (2.184)), we use Eq. (2.181)) to get
[ - Oy, @R X W) ] (2.186)

NS
= (%) P ek X ) (W™ + ™)y k+ (W™ + T ay, - k).

where use has been made of the fact that ay_,, - k can be commuted past : e!*X () + since
all possible commutators are proportional to k? = 0.

Now, when either £ —n > 1 orn > 1, Eq. annihilates the vacuum, because
in each term there is either a positive power of w which vanishes in the limit w — 0,
or there is a positive-moded «, which annihilates the vacuum. When n = 0, o, o p#
annihilates the vacuum but (w"+w") doesn’t vanish, and similarly when £—n = 0 the first
term annihilates the vacuum thanks to aj_, but the second doesn’t vanish, so Eq. (2.186)

becomes
/o1

2(%) X W) (50 + Bu)ag - k. (2.187)

Inserting this into Eq. (2.184) and expanding c(z) in modes, we see that the second term
of Eq. (2.179) becomes

N o 1 -
5 (§> : Z c_ga cp e oy K|0;0) (2.188)
<—1
|0;0) is annihilated by k - ap for ¢ > 0 and by c_y for £ < —2, while for £ = —1 the
expression vanishes due to the two factors of ¢;. Therefore since both Eq. (2.185) and
Eq. (2.189) vanish, so does the second term in Eq. (2.179)).

The T8 term in Q|SY) is equal to

dz

ZNa‘il\k> (2.189)

= Naot | e X ’0 Z (1 = m)ptman,0 : CeCmbn : €1]0).

£m,n

Since £ +m +n =1, at least one of the operators ¢y, ¢, by, is an annihilation operator or

vanishes due to nilpotence, but in the case n = —1, b, doesn’t anti-commute past ¢; and
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we need to use b_;¢1|0;0) = [0;0). Then the n =1 term in Eq. (2.189)) is

Nat | ek ’0 ZK:E s eoci—p ¢ 10) = —co| ST) (2.190)
which cancels the ¢ = 0 term from Eq. (2.179). Therefore Q|SY') is given completely by
Eq. @2.183).

Next we can find the action of @ on |S3). The first term coming from the “T'X” part

of Eq. (2.175)), i.e.

7{ dz c(z)( - ﬁax . 8X> Lc_1c1 pel X ’0|0§0> (2.191)

2mri

can be calculated using the OPE of dX#(z) with : e*X(®) . To get a normal-ordered

expression, we must commute the positive frequency operators aﬁfwo past : el X (w) ;, using

the mode expansion for 0X*(z) in Eq. (2.132)) and the commutator in Eq. (2.181)), giving
us a geometric series in w/z and w/z which can be evaluated at w = 0 yielding

OXH(z) : F X0 = —io/k“ e XO) X (2)e R XO) (2.192)

which gives us the OPE
OXH(z) : X0 Lok R XO) (2.193)
z

Inserting this in Eq. (2.191)) and then finding the residue of the contour integral after
expanding ¢(z) and the second 0X*(z) in modes, we see that Eq. (2.191]) is equal to

1
1 "\ 2 ;
3 <O;> k,, cha,nc,lcl el X ’0|O; 0) . (2.194)
neZz

Now, ¢, annihilates the vacuum for n > 2 while a_,, annihilates the vacuum for n < 0
(as before, there are terms coming from commuting it past : e*X : but these are all
proportional to k2 = 0). The only remaining contribution comes from n = 1, but this
term also vanishes because it contains two copies of ¢, i.e. , the “T'X part” of Q|S2) is
Zero.

To compute the second term in @Q|Ss) coming from 7", we expand b(z) in modes and

find
j(l{(izc(ﬁc)b c_1cr - %% 1] 10;0) (2.195)
2mi P ot ’

It can be seen that this expression vanishes unless n = 1 or n = —1; the contribution
from these two terms sums to give The only non-zero terms come fromn = —1andn =1
which sum to give

1o ik-X 1 2 . kX

58 (cOc)c : e 0]0; 0) — 50(80)8 cre” 0]0; 0), (2.196)
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but this also vanishes because 9%(cdc)c = c¢(de)(d%c), and therefore the “T8" part” and
hence all of Q]S2) is equal to zero.
Lastly, we should calculate Q|S3). Beginning with the contribution from the “7°8h

part” of (), we expand the fields in modes, obtaining

> (1= m)8tsmino : Cecmbn : €*¥(0;0) (2.197)
£m,n
where we’'ve used b_1c1/0;0) = |0;0). As above, at least one of the operators is an an-

nihilation operator because of the Kronecker 9, so all terms in the sum vanish and the
contribution from this term is zero.

To calculate the other term coming from the “T'X part” of @, we use the OPE of
OXH(z) with : e*X(®) . in Eq. . Using this OPE to replace X*(z) : e*X(0) : we
find

/

1 04 3 ik X
5 5 Qk Z Cmoz“y{ 27 Zm+n+1 el : ’0‘0; O>

m,neZ

(% 2k, Zc_ ot ;e X ‘ |0; 0) (2.198)
neZ

l\.')\r—t

Now, |0;0) is annihilated for all values of n # —1 (k - o, doesn’t commute with : el*X

but as before, the commutators are all proportional to k% = 0). Q|S3) is therefore equal
to the n = —1 term in Eq. (2.198]), and we have

N[

K|Sy . (2.199)

(%)

To summarize, the action of ) on the massless sector of the bosonic string is given by

DN | =

Q|S3) = %

Qa | |k) o< ke_qlk); Qb_1|k) x k- a_il|k); Qc_1lk) =0, (2.200)

From this, it follows that only the 26-dimensional subspace spanned by c_;|k) and e-a_1|k)
where k - ¢ = 0 is @)-closed. Moreover, the two dimensional space of states spanned by
c_1|k) and by k- a_1]k) is Q-exact, and therefore the Q)-cohomology of massless physical
states is 24-dimensional.

It is interesting to note that (as pointed out in section 4.3 of [62]) the action of @ on
the massless sector of the bosonic string is isomorphic to the action of the BRST variation
dp on the field content of Yang-Mills gauge theory, at least at the non-interacting level. If
A} is a gauge field and ¢* and ¢ are the ghost and anti-ghost field, respectively, then we
have

5B(A;f) x Ouc”; (53(6“) x 0-A%; (53(6“) =0, (2.201)
plus non-linear terms. There is a clear isomorphism between Eq. and Eq. .
The significance of this that it motivates us to guess that the o/ — 0 limit of open string

theory matches Yang-Mills theory not only at the level of summed-up amplitudes, but
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rather that we can expect to isolate the contributions coming from the various sectors of the
worldsheet theory and find that they individually match the corresponding terms coming
from Feynman diagrams on the Yang-Mills side. We will see later that the correspondence
seems to be valid even in the interacting theory, because we can find a diagram-by-diagram
matching between the two theories even at the two-loop level.

The BRST quantization of the RNS string proceeds along analogous lines to the bosonic

string, except the construction is more complicated.

2.3 The Schottky group

The first attempts at writing down multiloop amplitudes for the bosonic string were made
in the very early days of dual resonance models [73} 5] 6, [74, [75]. These amplitudes were
constructed by sewing together multi-reggeon (i.e. open string) vertices [706, [77, [78] which
were found, in turn, by factorizing the Veneziano amplitude [23]. It was quickly noticed
that the string diagrams were integrals over the moduli space of Riemann surfaces, where
the Riemann surfaces were naturally defined using Schottky groups.

The basic idea of the Schottky group is that h-loop Riemann surfaces are represented
as the quotient of the Riemann sphere or the upper-half-plane (with a discrete set of points
removed) by h Mobius maps. Each Mobius map can be specified by three parameters;
these constitute the moduli which are integrated over.

We can also use super-projective transformations to sew handles onto the super-
Riemann sphere cp'h by quotienting; these SRS’s correspond to worldsheets for su-
perstring amplitudes in which NS states are propagating along the sewn handles (because
quotienting by a super-projective transformation is equivalent to sewing two NS punc-
tures). Conversely, worldsheets in which R states propagate around handles must be
formed by sewing pairs of R punctures, which correspond to a different type of singularity

in the superconformal structure of the surface (see e.g. section 4 of [60] and [79]).

2.3.1 Projective transformations

Before describing super-projective transformations and super-Schottky groups which are
the appropriate tools for super-Riemann surfaces, we recall the main points about the
analogous quantities for Riemann surfaces.

As we have seen in Eq. and Eq. , a projective transformation maps the
Riemann sphere CP! to itself, and can be represented in homogeneous coordinates by a
2 x 2 matrix or in a local complex coordinate by a fractional linear transformation.

Let us use homogeneous coordinates (zy, z4), with z = z,/z4 when z4 # 0. We are
be interested in projective transformations with two distinct eigenvectors (uy,uq)" and
(vy,vq)t, called fixed point and an eigenvalue vk satisfying |[vk| < 1, where k is called
the multiplier (since det S = 1, the other eigenvalue must then equal 1/v/k). The action

2For the sake of simplicity, when zq # 0, we can choose the representative with z4 = 1, but one should
keep in mind that the bra and ket introduced here are projective objects, which can appear only in relations
that are unchanged when they are rescaled.
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of these transformations can be described by the following bracket notation for the points

of the Riemann surface

Zu . 0 1 Zu t_ 6 _,
a= () a=(L o) ()] = - e e

The eigenvector associated to the eigenvalue vk is called the attractive fixed point, and the
other one is called the repulsive fixed point. To see why this is so, note that an arbitrary
point on CP! can be written as a sum of the two eigenvectors, and then S™|z) converges

to one of the two fixed points as n — *oo
1
VEk

which converges, in a projective sense, to |u) for n — oo and to |v) for n — —oo. With

12) = Aglu) + Aa|v) = §"12) = ( )"yu> + A (VE)"v) (2.203)

this definition of the bra-vector we can follow the notation of [60], and introduce a skew-
symmetric bilinear form (w|z) which is proportional to the difference between the coordi-
nates of the two points. Indeed, (w|z) = z,wq — zqw, = —(z|w). Therefore, if z4, wq # 0,
(w|z) = zqwgq (# — w). In this language, we can write a projective transformation S in

terms of its multiplier k, and of the fixed-point kets |u) and |v), as

S = 1+

<U‘1u> [( 1) ol = (<4 4 1) o]
Lk

— k2 <]1 + <v’u>|v><ul> , (2.204)
where the second form is obtained by using 1 = (|u){v| — |v)(u|)/(v|u). The sign of the
square root of k is immaterial, since both choices define the same projective transformation
(the situation will be different in the supersymmetric case). It is easy to verify that S
turns into S~! under the exchange |u) <+ |v) and that the bra corresponding to the ket
|Sz) = S|z) is simply (Sz| = (2|S~!, so that the bilinear form is invariant under projective
transformations: (Sz|Sw) = (z|w). A single bracket, however, is not a well-defined object,
as it depends on the representative chosen for z and w; as is well-known, one can form the
first projective invariant by using four points, since in this case all z; components cancel
in the ratio
(21]20)(z3]za) _ (22— 21) (24 — 23)

(o120, 2, 20) = e = ) (aa— 1) (2.205)

We want to ensure S has one eigenvalue satisfying [vk| < 1 so we wish to exclude the
case when the two eigenvalues, say A+, both have absolute value 1. If [Ay|> = A A, =1
then since A, A\_ = 1, in the case we wish to exclude we have A, = A_. We can compute

the real and imaginary components

RO = 5O +20) = 50 +A0) = JT(S)

S = 5O A= 50 A = S VTS 4
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CP! C’

Ry

Figure 2.6: Given a Mobius map and a circle separating the two fixed points, we can
partition CP! in a natural way into a fundamental domain for S and two circular discs
containing the fixed points.

Then since y/Tr(S)2 — 4 is pure imaginary we will have Tr(S)? < 4 in the excluded case.
Since Tr(S) is real we will also have Tr(5)? > 0 in this excluded case.

Hence, we can ensure that there is always an eigenvalue with |\;| < 1 by requiring
Tr(S)? ¢ [0,4]. (2.206)

Mobius maps satisfying this property are called loxodromic. If the eigenvalues are real
then is it hyperbolic.

The projective transformations we have introduced have the property that they map
circles to circles (counting lines in the complex plane as circles through the point at infinity
on the Riemann sphere) [80]. We can see this because any Mdobius transformation can be
written as a composition of translation z — z + b, multiplication z — az, and inversion in
the unit circle, z — —1/z. Explicitly, we can decompose a general Mébius transformation

as inversion conjugated by two affine-linear maps:

az+b a b a 1 c
= == = S S241). 2.2
S d <z|—><c d>z+c>o<zl—> Z>o(z»—>dz+ ) (2.207)

It is obvious that translation and dilatation preserve circles. Inversion in the unit circle

preserves circles because we can show with algebraic manipulation that iﬁ

R =|z=C|*=|=|*(1 - C/z = C/z) + ||C|? (2.208)
then
R? 1 C/E+0)z ey |1 ¢ 2 (2.200)
(RZ—CI?)?  lz[I>  R2—JCI* " (R2—[ICI»? || = R2-|CI2]

so the map z — —1/z takes a circle with centre C' and radius R to a circle with centre
7=So and radius R?/(R? — ||C|%)2,

A Mobius map taking any circle C to any other circle C' can be constructed by picking
three points on C and three points on C’, and using the fact that for any two triples

21, %9, 23; W1, wa, w3 of points in CP! there is a Mobius map S with S(z;) = w;, and that

3Here || - || denotes the absolute value of a complex number: ||z +iy|| = /22 + y2 for z,y € R.
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a circle is completely determined by any three distinct points on it.

Consider a circle C on CP! separating the attractive fixed point u from the repulsive
fixed point v of some projective transformation S. Then the circle C’ defined as the image
of C under S separates u from C. With these two circles we can partition CP! into three
pieces: the region containing v bounded by C (say R); the region containing v bounded by
C’ (say R'), and the remainder (say Rg) (see Fig. 2.6). This has the property that S maps
the inside of C (i.e. R) to the outside of C’ (i.e. RU Ry) and the outside of C (i.e. RyUR')
to the inside of C’ (i.e. R'). From this it follows that Ry (plus one of the two circles, C
or C') is a fundamental domain for the action of S on CP' — {u, v}, which is to say that

it contains exactly one representative of each equivalency class of the relation z ~ S(z).

az+b
cz+d

in the complex plane such that S(C) = C’ and S is an isometry at C with the Euclidean

In particular, for S(z) = with ¢ # 0 we can choose a pair of such circles C and C’

metric. The circles are centered respectively in a/c and —d/c, and both have radius 1/|c|.
The quotient space (CP! — {u,v})/S is a Riemann surface; it can be obtained from CP!
schematically by cutting out R and R’ and gluing together the two circles C and C’ so it
is topologically a torus. We can always make a change of coordinates such that the two
fixed points are at u = 0 and v = oo, then S has the form z — S(2) = kz, so k is the sole
modulus for the torusf]

It is not actually necessary for the boundaries of the fundamental region to be circles;
they may as well be any Jordan curves with the same topology so long as one is the image
of the other under S.

Note that this is equivalent to ‘sewing’ a handle to the surface at the two points u and
v. To sew two points P; and P, on a Riemann surface means to take a pair of complex
coordinates charts z; which vanish at the points, i.e. z;(FP;) = 0, and then to remove the
points P; and identify the points in rest of the two charts via z120 = —k. k is called the
sewing parameter. We've already seen how a change of coordinates mapping u +— 0 and
v — oo can put any Mobius map into the form z ~ kz. z is the coordinate chart which
vanishes at u, and we can take w = —1/z to be the coordinate chart which vanishes at v.
Then the equivalence relation we are imposing takes the form zw ~ —k, i.e. we are sewing
u to v.

Higher-loop Riemann surfaces (i.e. those with multiple handles or boundaries) can be
constructed in a similar way. For a compact Riemann surface with h handles, we take h
Moébius maps S, u = 1,..., h such that we can find on the Riemann sphere 2h circles C,,,
C satisfying S,,(C,,) = C,y, with C,, around the repulsive fixed point v, and C,s around the
attractive fixed point uﬂﬂ Let R, denote the region inside C,, let R,/ denote the region
inside C,v, and let Ry denote the region outside all 2h circles.

The Schottky group S is the free group generated by the S,’s, i.e. it is the group of
all (reduced) words which can be written as a sequence of S,,’s and their inverses. Before

quotienting C by &, we need to remove the limit set A, which is the set of accumulation

“The torus is usually parametrized by a modulus 7, where the torus is constructed as C/ ~ where
w~w+1 ~ w+7. This coordinate w is related to z by z = ™%, so the moduli are related via k = e>™'7.

50On CP! there is no meaning of the inside and outside of a circle; so we need just that these statements
hold in some chart.
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Figure 2.7: Schottky circles for a genus 2 Riemann surface.

points of the orbits of S. To characterize A, we can consider an infinite set of nested
circles obtained by acting on the 2h defining circles with the elements of S. There is a
correspondence between circles and Schottky group words: there are 2h circles at the first
level (corresponding to the h Schottky generators and their inverses), and each circle at
the nth level has (2h — 1) of the (n + 1)th-level circles inside it, corresponding to the
fact that there are (2h — 1) ways to get a length-(n + 1) word from a length-n word by
multiplying on the left (since multiplying by the inverse of the left-most element gives
a length-(n — 1) word). We can define the precise correspondence between circles and
Schottky words recursively by saying that if « and § are two Schottky words, then the
circle C,.3 is defined as the image T, (Cg), and by identifying C, = C,, for T,, = S;l and
Co = Cy for T, = S,. With this definition, we see that if « is a length-n reduced word,
then if z is a point in Ry, then T,(z) lies inside the level-n circle C, but outside all of
the level-(n + 1) circles. There are 2h(2h — 1)"~! circles at level n. A point is in the
limit set A if and only if it is inside of a circle at level n for every n € N. There are
uncountably many limit points; there is a 1-1 correspondence between limit points and
infinite Schottky words.

In Fig.[2.7)the first three levels of Schottky circles are shown for a genus h = 2 Riemann
surface constructed with a Schottky group generated by two Mobius maps S; and So. Each
level-n circle contains (2h — 1) = 3 level-(n + 1) circles [81].

Once the limit set A has been substracted, we may quotient by the action of S and
we will obtain a genus-g Riemann surface. Topologically, quotienting by S is equivalent
to cutting out the insides of each of the 2h generating circles and gluing them pairwise
along their boundaries, so each pair of circles gives one handle on the quotient surface.
Conventionally, we take the a,-cycles on the quotient surface to be homologous to the
generating circles C,, while the b,-cycles go along the handles we have just added such
that b, connects a point z to S,(z) on the covering surface CP! — A. Fig. illustrates
this for h = 2 handles. Note that constructing Riemann surfaces with Schottky groups

puts the a, and b, cycles on different footings, so the behaviour of various formulae
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Figure 2.8: Quotienting by the Schottky group to glue two handles onto a Riemann surface.

under modular transformations mixing a, and b, cycles is often obscured. Other ways of
constructing higher-genus Riemann surfaces, such as quotienting the upper-half plane by
a Fuchsian group [41], do not have this drawback. We can see the origin of the dimension
of moduli space in this construction: the quotient surface Yj is completely determined
by the Schottky group Sp which in turn is completely specified by listing h generating
Mobius maps. Each of these can be specified by giving three complex numbers, i.e. the
two fixed points u,, v, and the multiplier k,, so we have 3h complex parameters. In fact,
some of these are redundant (as coordinates on moduli space) because we can always use
a global automorphism to fix any three points, for example, to fix u; = 0, v; = oo and
vo = 1; the rest of the parameters are the moduli and for closed string worldsheets we find
dimc(Mpy) = 3h — 3 as expected.

We are interested in open string worldsheets, so the Riemann surfaces we use are
bordered Riemann surfaces (recall that this means Riemann surfaces which are locally
biholomorphic with H, the upper-half plane). These can be constructed with Schottky
groups by starting with H instead of CP', and then quotienting by a particular Schottky
group. Note that the Schottky group will have to map the border of H to itself, i.e. , it will
have to fix the extended real line. This implies that the fixed points and the multipliers
are all real, or equivalently, so are the PSL(2, C) matrices, i.e. this type of Schottky group
is a subgroup of PSL(2,R). The same moduli-counting argument goes through as before,
except that the moduli are all constrained to be real so 3h — 3 is the real dimension of
moduli space, i.e. it is half as big for the open string case as for the closed string case
with the same number of loops. Fig. illustrates how an open string worldsheet can be
constructed by adding two boundaries to H with a Schottky subgroup of PSL(2, R).

As discussed in section [2.1.5] it is usually useful to formulate superstring theory on
super-Riemann surfaces; the additional structure they have requires the Schottky group
to be suitably modified.

2.3.2 Super-projective transformations

Super-projective transformations are automorphisms of the super-Riemann sphere cp'l,

which is defined in terms of homogeneous coordinates in C2I! by the equivalence relation
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Figure 2.9: Constructing an open string worldsheet with a Schottky subgroup of
PSL(2,R).

(21, 22]0) ~ (Az1, Az2|\0) for non-zero complex A, where the bosonic coordinates z; and
zo are not allowed to vanish simultaneously. To fix the superconformal structure, we may
specify a holomorphic 1-form on CP'! that is homogenous of degree 2 in z1, 22|(; such a
form is [60]

w = z1dzg — 29dz1 — 6d6. (2.210)

If we use scaling symmetry to set zo = 1 and write 21 = z, then @w = dz — #df which
is orthogonal to Dy = 9y + 00, so z|f are superconformal coordinates for z; # 0. If we

define a skew-symmetric bilinear form (-, ) on the homogeneous co-ordinates by

(2,y) = z1y2 — 2251 — Q¥ (2.211)

for y = (y1,y2|¢), then we may write w = (z,dz). A linear map on C211 will therefore
preserve w, and hence the superconformal structure, if it preserves (-,-). The group of

such transformations is OSp(1]2), which can be realised by matrices of the form

a b|la
S=| c d|p (2.212)
v d|e

where the 5 bosonic and 4 fermionic variables are subject to the 2 fermionic and 2 bosonic

constraints,

<g>:<a Z><_5> ad —bc—af =1 e=1—ap (2.213)
c v

so the group has dimension 3|2. We can find an OSp(1|2) matrix taking u = (u1, u2|6) and

v = (v1,v2|4) to points equivalent to (0,1]|0) and (1,0|0) respectively; one such matrix is

u9 —Ul 0
Ty = S V2 —U1 ¢ : (2.214)
(u,v) ug¢p—v30  vif—u1 ‘ (u,v) — 09
v/ (u,v) v/ (u,v) ! (u,v)
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We have one bosonic degree of freedom remaining; we can stipulate that a point w =
(w1, we|w) is mapped to a point equivalent to (1,1|Oywy) where there is no freedom in
choosing the fermionic co-ordinate, which is therefore a super-projective invariant of u, v

and w. The image of w under I'yy is

1

V{,v)

A general dilatation of the superconformal co-ordinates corresponds to the OSp(1]2) ma-

O(v,w) + ¢(w,u) +w(u,v) + w@qﬁ)'

(u,v)

| <<W, u), (w,v)] (2.215)

trix

: (2.216)

which leaves invariant the points (0,1]0) and (1,0/0). We may use a transformation like

this to scale the bosonic coordinates of I'yyw as desired, obtaining

P ran - (e s

giving us an explicit expression for the odd super-projective invariant Oz, z,z4:

(2.217)

Orinans = C1(z2,23) + (2(23,21) + (3(21,22) + (1 (2 (3 , (2.218)

V(21,22) (22, 23) (23, 21)

where z; = z;|(;, as in Eq. (3.222) of [39).

As with projective transformations, super-projective transformations preserve cross-

ratios of the form

~ 71,22) (23, %
\PZ]_Z2Z3Z4 = < ! 2>< 374) (2219)

(21,24) (23,22)

but there is a novelty in the super-projective case. In the non-supersymmetric case, any
cross-ratio of four points can be expressed simply in terms of any other cross-ratio of the
same four points, but the analogous statement does not hold. Instead, we need to include

the fermionic invariants, getting identities like

o=

6212322@Z12422 =1. (2-220)

~ ~ ~
\Ilzlzzzszzx + \1/212322Z4 - (\IJ21ZSZ2Z4)

This can be checked quickly by noting that the left-hand side is OSp(1|2)-invariant and
fixing 3|2 convenient superconformal co-ordinates e.g. z1 = 0|0, zo2 = 0|0, z3 = 7|6,

z4 = 1|¢, in which case it becomes simply

0
(1—n+0¢)+n—\/ﬁ—n¢=1. (2.221)

V1

Note that for |k| < 1, P(k) has 0/|0 as an attractive fixed point and oo|0 as a repulsive

fixed point. Using I'yy to map a pair of points u and v to 0|0 and oo|0 respectively, it
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follows that
S =T,lP(k)y (2.222)

has u as an attractive fixed point and v as a repulsive fixed point. Our skew-symmetric

quadratic form (-, -) can be expressed in terms of a bra-ket notation (u|v) = —(u, v) where
(u] = (ug, —u1,0) ) = (u1, u2|0)’ (2.223)
satisfying (u|v) = —(u,v). It is related to the super-difference between two points z — w:

if |z) = (2A1, A1, %A1)! and |[w) = (w2, A2, wA2)? for A1, Ao # 0, then
(W|z) = AMAa(z —w) = A da(z —w — Yw) . (2.224)

For cross-ratios, the A; all cancel so we can use either notation:

(z1|22) (23]24) _ 21~ 2923 = 24
(21|z4) (z8]22) 21~ 2423 =2

(2.225)

The bra-ket notation has the benefit of allowing us to write S defined in Eq. (2.222)) as

S=1+ <V|1u> (=3 + 1) v)ful = (<K% +1) jwy(v] - (2.226)

S defined this way satisfies

(2.227)

2.3.3 Super Schottky groups

Quotienting CP!!! by the action of S defined in Eq. is equivalent to putting a pair
of NS punctures at u and v and sewing them with a sewing parameter proportional to k.
Topologically, this has the same effect (at least on the reduced space CP!) as cutting out
discs around u and v and identifying their boundaries, so this quotient adds a handle to
the surface, increasing the genus by 1. The choice of spin structure along the handle is
determined by the branch of k3.

To build a genus-h SRS, we may repeat this sewing procedure h times, choosing h
pairs of attractive and repulsive fixed points u, = u,|0,, v, = v,|¢, and g multipliers k,,

for p = 1,..., h. The super-Schottky group S, is the group freely generated by
Sy =Tury, P(ku)Tu,v, pw=1,... h (2.228)

To obtain a genus h super-Riemann surface M, we subtract the limit set A (i.e. the set
of accumulation points of the orbits of S) from CP'" and then quotient by the action of
the super-Schottky group:

M, = (CP — A)/Sc,. (2.229)
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Note that the fixed points must be sufficiently far from each other and the multipliers suf-
ficiently small that there exists a fundamental domain with the desired topology, i.e. that
of CP!I" with 2k discs cut out. The fixed points u,, v, and the multipliers &, are moduli
for the surface, but for h > 2 we can use the OSp(1|2) symmetry to fix 3|2 of these:
u; = 0|0, vi = 0|0, va = 1|Oy,vyv, (Where Oy, v,v, is still an unfixed modulus) so the
super-moduli space ﬁh has complex dimension 3h — 3|2h — 2.

To build multi-loop open superstring worldsheets this way, we should start with the
super-disc D' which can be obtained by quotienting cplit by the involution z|f —
2*|6*, so RP!" is its border. A super-projective map will be an automorphism of D!
if it preserves RPM, so we should build the super-Schottky group from super-projective
transformations whose fixed points u,, v, are in R!" and whose multipliers k, are real.
If we quotient D' — A by A of these, then we will get a SRS with (h + 1) borders (and
no handles). The moduli space ﬁzp “" of such SRSs has real dimension 3h — 3|2h — 2.

For the h = 2 surfaces we are looking at, we use the OSp(1]|2) symmetry to write the

fixed points as in Eq. (4.24).

Multipliers

Every element S, of a super-Schottky group is similar to a matrix of the form P(k,) as
in Eq. (2.216)) for some k.. We can find k:a% using the cyclic property of the supertrace,

obtaining a quadratic equation with roots

Lk sTr(Sa) + 14 /(sTr(Sa) + 1)2 — 4
« - 2 9

(2.230)

one root being the inverse of the other. ka% is the one whose absolute value is less than 1.
We can expand the ka% as series in kz% For h = 2, using the fixed points Eq. 1)

we find

k(S182)% = k12 ko 2y + O(ky) (2.231)
= k12ko? Wypvyupve + O(ky) (2.232)

k(Sflsz)% = —k1%k2%% + O(ky) (2.233)
— k17ko? Uy puyupvs + O(Ky) - (2.234)

1
where y is defined in Eq. (4.27). Note that k(S7'S2)? can be obtained from k(Slsg)% by

swapping the attractive and repulsive fixed points of S; in the cross-ratio.

Super period matrix

The super-abelian differentials are an h-dimensional space of holomorphic volume forms
defined on a genus-h SRS. They are spanned by €,, © = 1,...,h normalized by their

integrals around the a-cycles:

1
1 AM
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Their integrals around the b-cycles define the super-period matrix

1
5o P =T (2.236)
1 Blt

The Q, can be expressed in terms of the super-Schottky group as (equation (21) of [9])

(2| Tao|u,)

2, (21) = [d=1av] > Dy log Aty (2.237)
() [ (2]® Talu,)  (2]® Talv,)
=0 3 [ ) Tl (2235)

where the sum Zg‘ ) is over all elements of the super-Schottky group which don’t have
Sffl as their right-most factor, D, is the superconformal derivative Dy, = 0y, + 19., and

® is the matrix

0 1
d=|0 00 |. (2.239)
110

® has the property that if |z) = (Az, \|\)! then
Dy (z|w) = (z|®|w) (2.240)

and that the map z|¢) — (z|w)|(z|®|w) is superconformal. The super period matrix can

be computed as

| Ta|v,)(vi|Talu,)

1 v (
Taw = 5= O log ky — )Z ) log < (2.241)

uV|Ta|uu><VV|Ta|VM>

The sum is over all elements of the super-Schottky group which don’t have SF! as their
left-most element or Sffl as their right-most element.

We can compute the leading terms in the small-k, expansion for 7,,. For h = 2, using
the fixed points in Eq. (4.24)) we find

1
logks —2k3 (1—- 1)@ 1
amir = | 108k =2k (1—2) 09 o +O®k)  (2.242)
logu log ko — 2k} (1 — %) 0o
and so
47% det(Im 7) = log(ky) log(ks) — log(u)? (2.243)

—2(1 — 1/u)(log(ki)k3 + log(ka)k? )06 + O(k,) -
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Figure 2.10: The construction of a one-loop two-point worldsheet with a super-Schottky
group.

2.4 Example: two-point gluon amplitude at one loop

Let us consider an example super-string calculation in the RNS formalism in which we
carry out an integration over super-moduli space with a potential ambiguity. Instead of
considering a two-loop vacuum amplitude, we will consider a one-loop two point amplitude.
The calculations are similar because both involve integration over the positions of four NS
punctures positioned on the boundary of the super-upper-half plane CP! /(z|p ~ z*|9),
characterized by one bosonic and two fermionic super-projective invariants. In the two-
loop vacuum case, the NS punctures are sewn in pairs while in the one-loop two-point
case, two of the NS punctures V; and Vs correspond to the position of vertex operators
where external states are emitted (see Fig. [2.10).

We want to calculate the one loop diagram contributing to the two-point function
for gluons, evaluated in the limit of vanishing momentum. The diagram must vanish
to preserve gauge invariance: the reason is that if the diagram doesn’t vanish, then the
renormalized lagrangian will gain a mass term of the form %mQAuA“ which is not invariant
under gauge transformations of the form A, — A, + 0, A [82].

Let us consider the worldsheet superfield
XH(z]0) = XH(z) + 109 (2) . (2.244)

The amplitude is calculated by inserting two vertex operators corresponding to the external
gluon states. Since we want to show that the diagram vanishes, the overall normalization
of the vertex operators is not important, and we can write them in terms of the superfield
XH* as:

V[XH o €, DXFeF X = ic, (p# — 0(10, X" + k - pyp)) P X (2.245)

where D is a the super-covariant derivative Eq. (2.84]). The integral which we have to

show vanishes is given in terms of the super-points Z; = 1|0 and Z3 = z|¢ by
€60 / dzdfde¢ (DXH(Z1)DX"(Zs) )
— . 62/(12 a6 dd)DZlDZZQN(Zl,Zg)’ o (2.246)

Za=z|¢
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in terms of the worldsheet propagator with Neumann boundary conditions which is given
by equation (25) of [9]

Y
GN(Z,Y) =logE(X,Y) Z / 2rImT),, / Q, (2.247)
Z

M,V 1

where £ is the super-symmetric generalization of the prime form (Eq. (2.64))) expressed in
the super-Schottky parametrization as:

1Z =T
EZ)Y)=(Z+Y

«

(2.248)

The notation H; means that the product is over all primary classes in the super Schottky
group. A primary class is an equivalence class of primitive super Schottky group elements,
i.e. those which cannot be written as a power of another super Schottky group element,
Sa # Sj (n > 2). Two primitive elements are in the same primary class if one is related
to the other by cyclic permutation of its factors, or by inversion. Any h primary classes
generate the h-loop super Schottky group.

Q,, is the supersymmetric generalization of the abelian differentials (see Eq. )
and 7 is the super-period matrix (see Eq. ) In our case, we have only one generator
S1(Z) =8S(z10) = kz\kéﬁ Then we can calculate the sole abelian differential as

Z=U
M(Z2) =dZDylog ~ V“ =dZDglog Z + O(k), (2.249)
Y
since T, = Id is the only super-Schottky group element whose right-most factor isn’t Sfl.
The sole entry in the super-period matrix is given by
2rlmT = —logk + O(k) . (2.250)

Since there is only one generator for the Schottky group, the expression for the prime form

becomes simply

Z - SMY)Y = S"(2)
Z - S"(Z)Y - S"(Y)

EzY)=12Z=-Y]] (2.251)

n>0

while the other term that contributes to the propagator can be evaluated using Eq. (2.250))

as

Y
1 y\?
— 1 [ — p—
E / (27ImT) /Z Q, = Slogk (log z) . (2.252)

pul

Putting these together into the expression Eq. (2.247) for the propagator, we find

(Z;Y)HZ;S”(Y) Y = 8"(2)

Gn(Z,Y) = log Z=S"(Z)Y = Sn(Y)

1 Y\ 2
+ 5ok <log;> . (2.253)

n>0
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To calculate the double derivative of the propagator appearing in Eq. ([2.246|), we tem-
porarily write Z; = z;|6; so that it makes sense to differentiate with respect to the bosonic
part of Z; (which it doesn’t if it’s fixed equal to 1), then we find

2
1
Dy, Dy, (log Zl) = —20,0,—— (2.254)
Z9 Z122

and when reinstating the gauge-fixed values of Z; and carrying out the integrals, this is

just equal to

1 Al 2 1 1
/dZ do d¢ DZlDZQm (10g Z2> ’Z1:1|9 = 1ng/k legZ =—1. (2255)
Zy=2z|¢

For the other term, we note

~ S"(Zy) Zy ~ S™(Z1)
Dy, Dy, log |(Z1 = Zs) H - —— (2.256)
7 = 80(2) 2, = $(2)
= Dy, Dz,108(Z1 = Z2) + Y _ [Dz,Dz,log(Z1 + S™(Z2))

n>0
+ Dz, Dz,(log Zy ~ S™(Z1))] ,

where terms which are independent of one of either Z; or Z, vanish because they are
annihilated by one of the two derivatives. Writing S™(2|0) = k"z|k2 6, we have
1

VAR S g( 1 ( 2)) k— 221 ]{3522—0102 ( )

then by swapping Z; <+ Z> and using the fact that the Dz, are fermionic objects which
anti-commute, we can use Eq. (2.257) to get a similar expression for Dz, Dz, log(Zs —
S™(Z1)), then both can be submitted into Eq. (2.256)) to get an expression for the double

derivative of the super prime form,

1
DZ DZ logE(Zl, Zg) = D I s (2.258)
! 2 Ték_zzl—kﬂ:@—%@g

so the integral to be evaluated is now

1
/dzd0d¢ (Dy, Dz, log €(Z1, Z3)) ‘Zl _ip = E:/dzdﬁdqb g (2259)
Zo=2l¢  neZ 2 —k2z2—-0¢

Now let’s say we naively ignore the need to fix the right bosonic variables and choose the

integration region to be z € [k, 1]. Then we get

Z/ | dzd0de— ,j" —Z [1kn ]1 (2.260)

2 — k2
neZz neZ

This expression is ill-defined because the n = 0 and n = —1 terms contains a division by

0 from the z = 1 and z = k boundaries, respectively. Even if we use a cut-off to regularize
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by changing the integration region for the bosonic modulus to z € [k + €,1 — €], then the

partial sums are given by

N
1 1 EN 41 14k .
SN_n;N<1—k”(1—e) - 1—k”(k+€)) =N T tOo).  (2.261)

which still diverges in the limit € — 0.

The proper approach to computing the integral is to consider the integrand v as an
integral form which is the only type of mathematical object that can be meaningfully inte-
grated on a supermanifold (see [83] for an explanation of this fact) such as the supermoduli
space §j\t1()52 and rewrite it as an exterior derivative, ¥ = dw. The integral should then be
evaluated via the supermanifold version of Stokes’ theorem by evaluating the integral of
w over the boundary of supermoduli space, 0/93\11052 Formally, the result of rewriting the
right-hand-side of Eq. with Stokes’ theorem is

Z/dzd@dgb = ! - (—k‘%/@d@@ log (k—% —k%z—eqﬁ) . (2.262)

nez : kgz o H(b

The purely fermionic integral at the 0|2-dimensional boundary is dependent upon the
the choice of which bosonic variable is held fixed, and therefore we should express the
integrand in terms of the appropriate variables for each boundary. Good bosonic variables
to fix are those which vanish (or diverge to infinity) at the boundary. We can define our
upper limit of integration as the locus Zy = Z; and our lower limit of integration as the

locus Zo = S(Z1), so we can define two new bosonic moduli:

Yb =7y~ Y| =25~ S(Zl) (2263)
—(z—1+08,6—0); = (z—k+k200,¢ — k20), (2.264)

whose bosonic parts
Yo=2—1400; yi=2—k+ k200 (2.265)

define the two boundary components via y; = 0 and yg = 0. Expressing z in terms of

these variable, we can re-write the integrand as either

_n n _n n H(b(k%—l)
log (k5 — k22— 0¢) =log(k™2 — (1 +yo)k?) + —p 2.266
og ( 2= 08) =loglk™F — (Lt o)k + g s (2260)
or
o n 0o(k"s — 1)
=log(k™ % — (k+y1)k?) + —pm— : 2.267
g (k+y)k?) + = BRI (2.267)

near yo = 0 and y; = 0, respectively. Let us evaluate the fermionic integral at the two
boundary components initially with a small cutoff yop = y; = € to avoid an infinite log(0)

divergence, although it will simply be annihilated by the Berezin integral. Writing down
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the difference of the two boundary components, we get

n ntl
/d9d¢1og(x—"—x"z—9¢):—hm< LA L ) (2.268)
Is]

—0\ k72 —k2(e+1) k™2 —k2(e+k)
— n=20
1+k2
={ -1 n=—1 (2.269)
1+k2
kT kT

T — = otherwise.
1+k2 1+k~ 2

Summing this up multiplied term-by-term with the factor of (—kf%) in Eq. (2.262)), we

arrive at

1 1
424046 (D2, D205 E(21, 22) | oy = - X ). (2210
/ Z;:zkb nez L+ k2 1+k= =R

The partial sums are given by

1 3 1
_ - )= i . 2.271
z_: (1+k2 1+k1§) 1+k2 1+4k5 (2.271)

Since |/€%| < 1 this converges as N — oo, so Eq. (2.270)) is simply equal to 1. Adding this
0 [2.255 which we calculated as —1, we see that the super-moduli space integral of the

double derivative of the propagator is given by

/dz do d¢ (l)Z1 D22 log gN<Z1, ZQ)) ‘ Z1=1/6 =0 s (2.272)
Zy=z|¢

so the diagram vanishes and gauge invariance is preserved.

Note that this argument does not hold if the sector of the worldsheet theory under
consideration has Dirichlet boundary conditions instead of Neumann boundary conditions
in that case the worldsheet propagator is no longer given by Gy as in Eq. , but
rather by the Dirichlet propagator which only depends on the prime form:

Gp(Z,Y)=1logé(X,Y). (2.273)

In this case, the —1 from Eq. no longer appears to cancel the 1 from Eq. ,
which means that the one-loop correction to the two-point function is finite and non-zero.
However, this is not a problem as it would have been with Neumann boundary conditions,
since Dirichlet boundary conditions correspond to scalar fields in the spacetime effective
theory which are not described by a gauge invariant Lagrangian and therefore may undergo
mass renormalization without a problem; in this case the mass renormalization will be of
the order g%/o/
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Chapter 3

Strings in background fields

3.1 Free open strings in a constant background magnetic
field

In this section we calculate the effect of the background magnetic field on the worldsheet
theory; the original calculations were done for bosonic strings in [84, [85, [86] and [87].
Superstring effective theories for spacetime gauge fields were studied in [88] [89] and [90].
We follow the calculation in [91, 92] and chapters 16 and 19 of [I9]. Consider an open
bosonic string propagating in a fixed background Kalb-Ramond field. The string can be

described by the Euclidean worldsheet action in conformal gauge as
1 oo ™
Shos =~ / dr /0 do (0°XM 0, XNGun +1eP0, XM XN Byy) . (3.1)
— 00

where €8 is the antisymmetric symbol with €™ = 1. This action is not, however, gauge
invariant: under a gauge transformation By;ny — Byn + Oy Ay — On Ay, it transforms

as Spos — Sbos + 0Sbos, Where

1

2ma!

5Sbos = -

/ dr / doi9, XM, XN (AN — OnAu) - (3.2)
—0o0 0

We can rewrite 85 in terms of total derivatives with the use of the chain rule: 9, X ROrA° =
o A°. The contribution from the 7 derivative vanishes when we assume the gauge trans-

formation tends to 0 as 7 — 00, while the contribution from the o derivative gives

1> L
5Shos = —5— [ dr [u\MaTX LZO, (3.3)

which doesn’t vanish in general. Gauge invariance can be imposed by coupling the end-
points of the string to the U(1) gauge field A, of the D-brane to which they are attached
by adding a boundary term to the action: Spos — S{DOS = Shos + Sobos, Where

Sobos = i/ dxX™M Ay — i/ dxX™M Ay, . (3.4)
o=0 o=T
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The action is then invariant under the combined gauge transformation

A
BuN — Bun + O AN — OnAp Ay — Ay — % . (3.5)

Note that since this gauge transformation is not necessarily of the form A = d¢, the D-
brane world-volume U(1) field strength F' = d A is not gauge invariant in general; only the
combination F = B + 27’ F is.

We can find the equation of motion for the action S} . by solving 65} . = 0. Under
a variation XM — XM 4 §XM which vanishes at 7 — oo, the bulk part of the action

varies as Shos — Spos + 05pos Where

s

1
2ma!

1 (o) s
+ — / dr / do 6 XM 9,0°X ) ; (3.6)
2ra! J_ o 0

5Sbos = — / dr [(5XM(GMN8(,XN + iBMNaTXN)}

o=0

similarly the coupling between the endpoints and the U(1) gauge field A,, varies as Sypos —
Sobos T 0891os With

oo e oo e
5Sohos = —i0 / ar [AMGTX“] =i / ar [5XMFMNaTXN} L@
oo =0 oo =0
where we've used §4y; = ONAySdXY. By the fundamental lemma of the calculus of
variations, the equation of motion can be read off from the second line of Eq.
as 0,0%X); = 0. For the “Dirichlet directions” transverse to the D-branes, we have
0=06Xx! |o=0,x so the boundary contribution vanishes automatically. In the “Neumann
directions” this doesn’t hold but the boundary contribution coming from Eq. and
the first line of Eq. must still vanish, so we get the boundary condition

(GuOs +1F0-) X" =0. (3.8)

o=0,m

We can rewrite everything in terms of the complex worldsheet coordinates Eq. ([2.28]); then

Eq. (3.8) becomes

=0. (3.9)

((GW + ‘Fr(tclf/)) d - (GW B }—/5(;))5))(” Im(2z)=0

where we've used z = zZ. We have 0,9, + 0,0, = 4\z|258 so the equation of motion
becomes d0X* = 0. The boundary conditions Eq. (3.9) can be recast in terms of a

‘reflection matrix’ R(°) as

DX o = (R, 0X7 R = (G- F NG+ FI).  (3.10)

‘Im(z)zo ;

We can solve the equation of motion with these boundary conditions in terms of chiral

fields y#(z,%Z) = y*(z) which are sections of a holomorphic vector bundle on C\ {0} with
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" yG). O Re(e)

Figure 3.1: Complex conjugate paths between the positive and negative real axes.

non-trivial monodromy around z = 0 given by a ‘monodromy matrix’ R:
y“(e%iz) =R, y"(2); R = (R(“))fl (R(O)) , (3.11)
by writing

XP(2,2) = ¢ + %(y“(z) + (RO),y(2) (3.12)
This clearly satisfies Eq. at the boundary ¢ = 0. To verify that the boundary
condition as ¢ = 7 is satisfied, we consider dy*(z) and Oy*(z) evaluated at a point on
the negative real axis, where the branch is defined by requiring continuity for z in the
upper-half-plane. As z moves along a path in the upper-half plane, Z will move along the
complex conjugate path in the lower-half plane, and therefore when the paths meet at the
negative real axis, dy*(z) will be on a different branch from 9y*(z) (see Fig. , SO we
have

ayu(z)‘lm(z)zo = RM, éy”(z)\lm(z)zo, (3.13)

By inserting the expression for R in Eq. (3.11)) we see that this satisfies Eq. (3.10]) for
o = m; therefore X* in Eq. (3.12)) is a classical solution in this background.
Now let’s assume a flat metric, G\, = 7, and assume that the background fields F

are magnetic fields in the same plane as each other, i.e. the z'-2? plane. Let’s work

(

in a Lorentz frame in which ]-'u,‘f) = f0) (Mu1m2v — Nu2my1), then the reflection matrices

Eq. (3.10) take the form

1 0 0
2
0 o 2
1+72, 1+f§,)
20y 1=fio
1+f(20) 1+f(20)

(3.14)

This is just a rotation in the X'-X? plane since we can write

1— 1t
1+ f(QU)

—2f(0)

- (@) .
cos(2m0\7’) ; 1+f(20)

= sin(270(?)), where 70°) = — arctan flo)- (3.15)

R() can be diagonalized by grouping pairs of target spacetime coordinates X* together
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into a complex basis (Zi,Zi), with
Zh=X¥1_ix?%, n=1,...,D/2—1; zPl2 = x0_ixP, (3.16)
and Z' = (Z “)*. In this basis, the reflection matrices are given by

R(O’)zl — e—QWiG(U) Zl : R(O’)Zl — 6271'19(‘7)71 n
RO zi = 7i. ROZ' =7" i£1.

—

3.17)
3.18)

—

and therefore the monodromy matrix Eq. (3.11)) satisfies:

RZL — o2mi(6™—6©) 1. R7Z = o—2mi(6M—0©) 71

)

: (3.19)

and acts trivially on the other directions.

Now, we have seen that for the free bosonic string parametrized by the upper-half-
plane, the analytic function 0X* can be expanded as a Laurent series in powers of z
according to Eq. . In the case of strings with a monodromy 6 = 0™ — (0 the
holomorphic function X* can be expanded as a series multiplying z~"¢  which has the

requisite monodromy properties for all n. To be precise, we use the expansion (Eq. (2.12)
of [92])

00 )
07" = —iV2o/ ( a0 Ly el z”+9i‘1) : (3.20)
n=1 n=0
. o oo
97" — —i /2a1<z a%_ﬁ_aiz—n—i-@i—l + Z C—L;rll_eizn—i-@i—l) . (3.21)
n=0 n=1

The commutation relations Eq. (2.134)) need to be modified as follows: we have

(@, ajg_ej] = (n—0;)69896, for n,m > 1, (3.22)
[aﬁl+9i, ajgwj] = (n+60:)6"6nm for n,m > 0; (3.23)

there is a ‘twisted vacuum’ [92] |©) for which some of these are annihilation operators
satisfying &%_eil@> = a%l_s_@i\@) = 0 for n > 1 and m > 0 while the rest are creation
operators.

3.1.1 Superstrings

We can extend the construction to strings with worldsheet fermions by appending the
action Spes in Eq. (3.1)) with the action][92]

i

Sterm = — / dT/ do XM p®0ax™ (Gun + Bun) (3.24)
—00 0

iV ge%

where {p®} are a basis for a two-dimensional representation of the worldsheet Clifford

algebra, and XM = (x™)p7. As before, this is not gauge invariant and the combination
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Sbos + Sabos + Sterm 1S N0t supersymmetric, therefore we need to include a boundary term

[ ] Sferm — Sferm Sterm + S8 ferm, Where
i [ ™
58 ferm = —2/ dr [YpTXNF%)V] . (3.25)
— 00 o=0

In terms of the chiral spinors x4 defined in Eq. || and the monodromy matrices R(@)
defined in Eq. (3.10)), the boundary conditions become[92]

M

K,y = (RO, and M| = —p(ROYM N, (3.26)

where 1 = 1 for the NS sector and n = —1 for the R sector. In the spacetime basis in which
the monodromy matrix is diagonal, in terms of the upper-half-plane parametrization of
the open string worldsheet, we can solve Eq. (3.26) in terms of sections of a spin bundle

on the worldsheet with nontrivial monodromy satisfying
\Iji(e%riz) — neQﬂ'i@\I,i(Z) : \I,i(e%riz) — 7]6_2W16\Ifi(2’) ] (327)

with the mode expansion

[e.e]
) = VB Bz w0 ), (3.28)

n+6; z

=2 Z (Vg2 " 02+ Ul 2" 073), (3.29)

where v = 0 for the R sector and v = % for the NS sector. The modes satisfy the

anti-commutation relations [92]
(Ul g, O oy = {0 WT Y = 5996, for n,m > . (3.30)

¥ and W are related to x+ via x}(z) = z%¢+M(z) and xM(z) = Zéwj_‘/[(é).

3.2 Higher loop string diagrams in background fields

Free strings propagating in a constant background field can be described by giving the
XH(z|0) = X*(z) + i0y*(z) superfield a non-trivial monodromy around z = 0 on the
complex plane.

For higher-loop amplitudes, the situation is similar. A h-loop open string worldsheet
has (h + 1) boundaries, potentially attached to (h + 1) different D branes, but the X* su-
perfields living on the worldsheet are sensitive only to the difference between the strengths
of the background fields living on each D brane—assuming that the spacetime reflection
matrices associated to each boundary commute with each other, which is an assumption
we are making.

For the two-loop vacuum amplitudes which we are computing, the string worldsheets

can end on (up to) three D branes, each of which supports a background field of the form
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Figure 3.2: Open string worldsheets coupled to D-branes with background fields have
compact Riemann surfaces with non-trivial monodromies as their doubles.

Eq. . Grouping the worldsheet fields X! and X? together as Z* = %(X1 +iX?),
we find that the worldsheet field Z on the double of the bordered Riemann surface (which
is a genus h = 2 compact Riemann surface) is a section of a line bundle with non-trivial
monodromies around the two b;-cycles. To be precise, if the three open string worldsheet
boundaries have background fields of the form in Eq. whose strength is given by
B; as indicated in the first diagram in Fig. then the worldsheet fields Z* will have
monodromy e*?™¢ around the homology cycles on the double surface as indicated in the

second diagram of Fig. where the relation between B; and €; is given by
tan(re;) = 2w’ (B — B3) ; tan(meg) = 2ma/ (B3 — Ba) . (3.31)

In particular, for the Z% sector of the worldsheet theory the abelian differentials need
to be modified to account for the twists; they should be replaced with Prym differentials
which are holomorphic sections of a line bundle on the SRS with the same non-trivial
monodromies around the homology cycles. Since the period matrix is defined in terms of

the abelian differentials, it too will have to be modified.

The twisted period matrix on a Riemann surface

It was shown how to write down Prym differentials for Riemann surfaces in terms of the
Schottky group using the sewing procedure in [51] and [16]; the periods of these differentials
were first studied in [16]; we compute them with a different method used in [94] which we
will modify for use with superstrings.

The space of Prym differentials is (h — 1)-dimensional on a surface with h handles,
so the twisted period matrix will be an (h — 1) x (h — 1) matrix. In our case, h = 2 so
the twisted period matrix is just one number, which can be shown to be given by the

expression [94]

—in(e1+e€2) n
_ ¢ 2miAZ-E 2mi(E7)2\ OET

S N G RN 1- Q —¢,). 39
T {Sin(ﬂ—(fl + 62)) /0 ¢ ( ¢ ) 1 (Z)} =+ (6/,L — 6,“) (3 3 )

where the monodromies around the a-cycles are trivial and the monodromies around the

b-cycles are given by €,, and the two Schottky generators are taken to have fixed points
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(m1,61) = (0,00) and (m2,&2) = (n,1). In Eq. (3.32)), A7, is the vector of Riemann constants
and Qf'T is the Prym differential with monodromy (€- 7), along the a, homology cycle.
Here 7 is the period matrix.

A% can be expressed in the Schottky parametrization as (Eq. (A.21) of [8])

1 1 . d § — Ta(nu) 2 — T (&)
z_ - ) = o (v) (1) I 14
AL = 51 { 5 log k,, — i+ ; g ) 1og &)~ Tu(u) 2 = Tu(ny) (3.33)

where the second sum ) > () is over all elements of the Schottky group which have

«
neither S! as their left-most element nor S’ffl as their right-most element.

A basis of (h — 1) Prym differentials with monodromy ¢, along the a, homology cycle
can be expressed as (Eq. (3.11) of [94])

2 2 1— e27rie,, 2
0 (2) = G2) = T e Sh () v=1...,(h—1). (3.34)

Here Cf: are a set of h 1-forms with the same monodromy, which are holomorphic every-

where except some arbitrary base point zp, defined as (Eq. (3.15) of [94])

€ _ (k) 7i(€ Na+eu) 1 - 1
C(z) = (Z 2mi(@Nat [ZTQ(W) ZTa(ﬁﬂ)] (3.35)

TiE i€ Ng 1 1
(1 —ef H);GQ " |:Z—Ta<20) _z—Ta(ag)Ddz

«

where the first sum is over all Schottky group elements which don’t have S’;d as their right-
most factor and the second sum is over all Schottky group elements. Also in Eq. (3.35)),

if T, = TS? with £ > 1
_ o« P - (3.36)
§u  otherwise,

ay,
and N4 counts how many times each Schottky generator appears in T}, defined by N§ = 0
for T, = 1d and Ni = Nj £ 1 for T, = S;'Tp.

Note that Q, defined in Eq. (3.34)) is not the same as ;" which appears in Eq. (3.32));

to get that we need to replace €, with (e - 7), everywhere it appears.

3.2.1 The twisted period matrix on a super Riemann surface

To supersymmetrize 7z, we find supersymmetric extensions of A} and €, replace the

2mi(eT)u - and replace the

period matrix 7 with the super-period matrix 7 in the phases e
integration between the fixed points 0 = n; and 1 = 7y with an integration between the
super fixed points 0|0 = u; and u|f = us.

To supersymmetrize Af, we need to replace the cross-ratios in Eq. (3-33) with super-
projective invariant cross-ratios, and replace the fixed points n,,¢, with u, = w,|0,,

vV, = vul¢u, and replace the base point zy with a super-point z = z[i). The formula
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becomes, then,

L)1 . (v, Talu,) (2Talv,)
z_ ) _— _ @) N (0) viTaluy al vy
A# 27ri{ 210gku 7r1+; Za: log <VV|TO[’V#> <Z|Ta|u#> . (3.37)

For our purposes, we want to compute A7, for h = 2 with the following fixed points:
u; = 0|0; vy = 00|0; uy = ulb; vy =1|¢. (3.38)

At order (’)(k,ﬁ), we find

o 1 g 1 i 11 1 1
A1_27Ti{ 2logkl mi— logz + k22(1 u)(u(l_z)ez/}—i—u_zwqb (3.39)
z4+uz —2u 111 —u
u(u_z)(l_z)9¢)—k12k22 (1= 200 + (u— 2)v6) |+ Oky)
! - -z 1 1
2_%{ 5 log ky — i+ log —— + —— 0y + ——¢ (3.40)

_ ;ﬂ%i ((u=2)09 + 2(1 — w06 +u(1 - 2)u0)

_klékzé(l_u“)z( L gy 2 1/1¢>}+O(ku).

uU—z 1—=2

Exponentiating these, we get

= : _a e 1— €2
eQmeAz _ e—m(q—i—eg)k,l 2 kz 2 €1 (u _i) ~ (3‘41)
1 1 1 U 1
[1761{ 71{;22(17u)<u(1—z)9er u—zw¢+ (z—u B u(l—z))9¢)

A Rl

— (1= 2)0% + (u—2)v0) }

+62{u i 29¢+ %wa)* kﬁé((u— 2)0¢ + z(1 — u)0o

1 1 — 2
Fu(l — 2)ihe) — ki 2ky? a u“)

(uiz&p—i—lizwgb)}} +O(ku).-

The Prym differentials Qi are holomorphic differentials; the natural analogues on SRSs are
holomorphic volume forms: sections of the Berezinian bundle. Just as holomorphic differ-
entials can be written locally as dz 0, f(z), sections of the Berezian can be written locally
as [dz|dy] Dy f(z|1), the combination being invariant under change of superconformal
coordinates [60]. We note that we can write equation Eq. for Cf: as

€ 0 (k) Ti(€ Na+e€u _Ta( )
Cu(2) =dz (%(EO; H g2mi(@Nat ) log [z—Ta(Zz)} (3.42)
+ (1 N e?ﬂ'ifu) Ze2ﬂi€’-Na IOg {j__;ja((z[;))}) ,
@ o\

so to find the corresponding SRS volume forms we replace the expressions inside the

logarithms with their natural superconformal analogues and replace dz d, — [dz|dy)] Dy.
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This yields

Gilelw) = [defg) Dy (3 ebmEten g [ e ] (3.43)
=)
— e[y (Z(u)ezm(aNﬁsu) [%?{’;‘75;;) B <<ZZ|@T§T‘|,:;;)] (3.44)
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(z|Talz0)  (2[Talay)

27r16# Z 27r16Na|: |(I)Ta|ZO> <Z’(I)Ta|au>}>

where we've used ® defined in Eq. (2.239)), |zo) is an arbitrary base point, and

) lu,) if To = TS, with £>1 (3.45)
a = .
! |v,) otherwise.

Then we can write down a basis of (h — 1) holomorphic volume forms Q¢ (z) with the
expected monodromies along the homology cycles using the analogue of Eq. (3.34]), noting

that the dependence on the base point |zp) cancels out:

1— 627'('16,;

2 (2l0) = G (2l¥) — T— e G 21¥) v=1,....(h=1). (3.46)

We can calculate QS (z|1) as a series expansion in \/E Truncating to finite order, we
only need to sum Eq. over finitely many terms of the super-Schottky group, because
if the contribution from T\, is (’)(ka%) and the left-most factor of T, is not Slfl, then the
contribution from S#Ta is O(kugka%). This means that if we only want to compute to
(’)(\/E) for h = 2 then we only need to sum over

T, € {Id, ST1, S5, (S182)*, (S71S2)*1, (8185 1)E, (S981)F} . (3.47)

We obtain, using the fixed points given in Eq. (4.24)),

¢ _ (1— 8§85 (1-8)¢
(=) = [dzldy] | - G s ) s (3.48)
L (STu(l = &) — (57~ ) = SiSju+ w)z + (1 - §5)) ¥

(1-— 82)(u —2)(1—2)z
pt{ - U= SDSIS—0) - S - )

(1—85)z S{(1—S5u
Lp SHL-SD0 | SH1-Sfwe  (ST-wp
_kz{ u—z + uU—z Sgu(l—z)
_ S5(L—Sfu)fgy  (Sf—wbey (1 Sf>¢}
(u — 2)2 Sgu(l —2)2  S5(1-2)
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n S5(0(1 = S) — ¢+ Sfug)  ((u—87)f — (1 -~ SHHug)

S{u S¢Ssu
S0~ 50— (1~ ) (1~ S~ wp
SSuz (1-85u(l—=2)
_(A=8HSTL—we (1 - S))SIS5(1 — u)(S50 — o)
(1= S)Sgu(l - 2) (- SPu—2)
(1= S)SISI —w)dy (1 - S7)P(1+SH(L — u)dgy
(- S(u—27 ST — Spu(l — 2
(1- S —u)(up — 850) (1 —SH)(S5)*(1 — u)o
ST -SDS51—2u | S — Syulu—»)

(1-SDSHL —wbow  (1-SHSIL—wé\] 0
S{1-85(u—2)?  S{(1-8)(u-2) H (k).

where
S =emn (3.49)

In our calculation of the twisted super-period matrix, the Prym differential appears not
with the monodromies € but with (¢-7). All of the dependence of Q¢ on the monodromies
enters only through the phases Sﬁ, so we should replace 85 in Eq. 1} with Sf:"" =
e2mi(ET)u Using 7 from Eq. (2.242)), we find

Sf.-r — o2m(ET) _ k?uﬁz (1 _ 261]432%(1 — 1/u)(9(b) + O(ku) ) (3.50)
S5T = e2m(ET)2 kg?ut (1 — 2627{71%(1 - 1/“)‘%’) + O(kp) - (3.51)

We now have the ingredients to compute 7.. We write

e—iﬂ'(el—i—EQ) ulf riAZE . R
Te=q —— TR =SST)YQT () p + (e, = —€,). 3.52
ST by SN ) 3
We insert Q7 (z) from Eq. (3.48) and e*™A%€ from Eq. (3.41)) and carry out the integra-
tion over 1, which amounts to selecting the coefficients of ¢; the boundary terms don’t

contribute. We get a sum of integrals of the form

e—iﬂ'(€1 +e€2)

S eT “ nl—¢; 1— nl+tes _ nl—eq
Te {; fl(u78,u 7kH76H‘67 (b)SiIl(ﬂ'(El —|—62)) /0 dz 2™ ( Z) 2 (U Z) 3 }
(6 — —€) - (3.53)

We can evaluate these integral with the substitution z = tu, getting

u & znlfq(l o Z)nngeg _ u1+n1+n3—61—e3 1 & tni—el (1 _ ut)n2+62 (3 54)
0 (u — Z)—n3+ez 0 (1 _ t)_”3+€2 ’

IF'l+n —e)I'(14+n3 —€)
I'2+n1+n3—e —e)

—_ u1+n1+n3—51—e3

(3.55)

><2F1(—n2—62,1+n1—61;2+n1—|—n3—61—62;u)
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where the hypergeometric function is given by the integral representation

1
JFy(a, by c; 2) F(bmc_b)/o P11 4)eb1(1 — ) (3.56)

In fact we can combine the factor of 1/sin(m(e; + €2)) in Eq. (3.53]) with the I' functions
in Eq. (3.55) at this stage using the identity I'(z)I'(1 — =) sin(7wx) = 7 to obtain

1 1 _ 1 _1)—1—n1—n3

sin(m(eg +€))(2+ny+ng—e —e)
X F(—l — N1 — N3+ €1 +62) (3.57)
and therefore

u 2M el (1—z)n2te2
fO dz (ufz)*”3+52

—_

Sin(ﬂ‘(el i 62)) = ;(71)—1—n1—n3u1+n1+n3—e1—esr(1 +n;— 61) (3.58)

X F(l + ng — 62)F(—1 —ny—n3+e + 62)

X oF1(—n2 —ea, 1 +m1 —€1;2+n1 +ng — €1 — ex;u).
This integration can be carried out for each term in Eq. (3.53)). All calculations in this

section can be carried out using symbolic computation on MATHEMATICAB we arrive at

the following expression for the determinant of the Prym period matrix:

1 —2 _a

=z o 2k 2u T (—e) T (—€e2) T (€1 + €2)

X (62 2P (—e1,1 — €25 —e1 — €3 + L) (kS u® — 1) (k2us — 1)

Te

+(u—1)2F1 (1 —€1,1 —€2;—€1 — e+ L;u) (e2 — k?u (e (kj'u? —1) + 62)))

1
+ —elegu%(_el_Q)F (—€1) T (—e2) T (€1 + €2) oF1 (1 —€1,1 — €95 —€1 — €9 + 15 u)

472
_e e 1 ¢ _e2 . @ .
X (k) 2u™ % =k u?) (ky a2 — kgt u? )0¢
kl% _3671 -3 —€e1—2€3 €1 €2
+ ik Ty T r(1—62){k1 (—u) T (—e1) T (€1 + €2)
X (€12F1 (1 —€1,1 —€9;—€1 —ea+ L;u) + €22F1 (—e€1,1 — €25 —€1 — €2 + 1 u))
% (_ k;guelfl _ k%elu%gfl + k%q k§2u61+2€2 + 1)
—F(2—61)F(€1+62—1) 2F1(2—61,1—62;—61—62+2;u)
X (—k%elu%Q (1 — k§2u€1+1) — kSu + u)
+F(1—61)F(61—|—62) 2F1 (1—61,1—62;—61 —€2+1;U)
% (_ ki1u€2+1 (k;zki1u€1+€2 + 1) + kiluerl (k?uq 4 kiluQ)
= (1= K (- k) ) oo
1
k 2 —2e1—¢€ ~32
+4L7T2{—u 20-e2] (1 — )T (—eg — 1) iy 2

!The MATHEMATICA notebook should be available at http://www.samplayle.com/mathematica/
superschottky.nb|or is otherwise obtainable from the author by email.
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+

X (F(el +ea+1)2F1 (1 —€1,2—€9;—€1 —ea+ L5u)
—T'(e1 + €2) (2F1 (2—€1,2—€2;—€1 — €2+ 1;u)
—oFi (1—€,2—€35—€1 —ea+ L;u) ) (1 —€1))
X (k? <k§2 (61 —ea — 1) u + k%” (e2+1) uZer + kileluQ) !
— k52 (kgz (61 — €2) ut + k§€262u261 + €1 + 62) uct
— kY (RSPu + 1) (k2 (k2u + €1 — 2)u + 1) u®
_a

4 (k;Q (u61+€2k§261kil + €1+ €9 — 1) ut — €9 + 1) u -+ €2> kl 2
—u eI (3 )T (—eg — 1) T (€1 + €9 — 1)

_3eg
X oF1 (3—€1,2—€;—e1 —ea +2;u) ky 2
X ( — k2 (1 —w)ep + 1) u® — k32 (1—(u ' =1)e)u* + k3e2qla
+ES <k2 (—uer + €1 — (1 — w)es + 1) a1

+ kgez (—61 —€e+u (61 + e+ 1)) e

-1 e
— kS’EQ (u—(1-— u)eg)u3El — €9+ EQU )u62 + 1)k1 2

+u21720 (2 — )T (—eg — 1)T (€1 + €2) 2F1 (2 — €1,2 — €25 —€1 — €2 + 15 )
_3ep
x ky 2 (kQ (61 4+ u (—uer — €2 +2) + e2) u
+ k3 (—6—1 +u(ep —e) +ea+ 2) U — B3 (1 — u)eg + 2) u
u

+ ki (k;Q (u (1 —€2) +ea—2— %) ul — kg” (u (uer + €9 4 2) — €1 — €3) u!

_f

+ k5 (u(e2 +2) — e2) w3t — (1 — u)eg + 2)u? + (62 — 2) u — 62>k:1 2 }t%)

1 1
k.1§k2§ _ 3¢ 3eo

o (u— Dk, Tk;T{Qr (—e)T (—es — )T (e1 + ea + 2)

X oF (—€1,1 — €25 —€1 — €2 — 15 u) k‘fel <u2€1k§€2 — 1) cou 26171

+ 2T (=€) T (—€e2) T (€1 + €2) k%elkg’qeg(glﬂ (1 —€1,1 —eg;—€1 —ea+ L;u) e
+ oF) (—€1,1 —€3;—€1 — €2 + 15 u) ez)uel_l —T'2—€)l(—ea—1)T (€1 + €2)
X oF (2 — €1, —€2;—€1 — €2 + L5 u) (u%zk%l — 1) kgeZelu_262_1
+T(1—€e)T (e —1)T (€1 + €2) k3

X (2F1 (2 —€1,—€2;—€1 —€ea+ L;u) (1 — 1)

+ oy (1—e1,—€25—€e1 — &2+ Liu) (g + 1)) w2271

—T(1—€)T(—e2) T (€1 +€2) 2F1 (1 — €1,2 — €2; —€1 — €2 + 1 u) kS?

X (u62 (u26262k%€1 + (u2€2kf€1 —1)er + )k + u( — u (e1 + €2 — 1) k!

+ uZe (61 + 262 + 1) k%el + w3 (1 +e2—1) k::lkl — €] + 2€9 — 1))u_61_2€2_1
—T(2—€e)T (—e2)T(e1+€2—1) 2F1 (2 —€1,2 — €25 —€1 — €2 + 2;u) kS?

X (ueQ (—e1 + 262+ 1) kT + u?e (u€p + €1 + uea — e + 1) k:fel
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+ e (61 + 262 — 1) ki’el — (u+1)e1 + ueg + €2 — 1) yer2e
—I'B—€) (—e2) T (e1+€2—2) 2F1 (3 —€1,2 — €25 —€1 — €2 + 35 u) kS

x (2u“ ekt + (u262kf61 —1)e )u~ 12t

+2(1—€)T(—€e2) T (€1 +€2) 2F1 (1 —€1,1 — €9;—€1 — €2 + 1 u)

x (WD 4 1) k32 eut ™22 T (=) T (—e2 — 1) T (61 + €2 + 2)

x oFy (—e1, —€2; —e1 — € — L;u) kY’ (u262kf€1 - 1) k22 ey
+2'B—€e) T (—e2—1)T (1 + €2 — 1) 2F1 (3 —€1,1 — €25 —€1 — €2 + 2;u) kT
x (u2k§ - 1) eu 2172 T (—e)T (—e2) T (61 + 2)

X kilkgz(QFl (1—€1,2—€9;—€1 —ea+ L;u) e

+ oF) (—€1,2 —€2;—€1 — €2 + L;u) 62) (2u€262k§1 + (u262k%€1 — l)el)u_€1_€2_1
+2'2—€) T (—€ea) T (€1 +e2— 1)

X oF1 (2 —€1,1 — €2;—€1 — €2 + 2;u) k:ilkg’e?eguel_ez

+T0(2—€)T(—ea— 1T (e1+€2) 2F1 (2 —€1,1 — €95 —€1 — €2 + 15 u)

X (u52+1 (u251k§€2 (61 + 269 — 1) — 262)]43;1

+uaFR)22 (e) — (e 4 €9 + 1)) k3

+ e (u2€1+1k362 (—€1 +2e2+1) — 262)k:i’61

— 2ueq + u261k§€2 (e2 +u (€1 + €2)) )u_2(61+62)_1

+T(1—€)T(—e2—1)T (e1 + €2) (2F1 (2—€1,1 —€3;—€1 —ea+ 1;u) (g — 1)
+oF1 (1 —€1,1 —e9;—€1 —62+1;u)(62+1))

X (WPITR? (e 4 (u— e — 1) kT — 0?2 (k52 (e1 — 2e2 + 1) u®! + 2e2) k7!
+ e (u261k§62 (—€1 +uea +ea+1) — 262)](2?61 — 2uey

U2 (e + 2€0) )u_2(61+62)_1}¢9¢ + O(k) + (4 ¢ —€,) (3.59)
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Chapter 4

The Quantum Field Theory limit

of String Diagrams

It has been known since the early days of string theory that in the zero-slope limit o/ — 0,
string theory can be described by an effective field theory in the target spacetime of Yang-
Mills gauge theory coupled to general relativity [2, B]. In fact the correspondence can
be made even more precise: in the Schottky group the o/ — 0 limit of a string theory
amplitude is expressed as a sum of finitely many integrals, seemingly associated to the
different types of states that can propagate through degenerating homology cycles (i.e. to
the different sectors of the worldsheet CFT). In this section we perform the necessary
calculations to show that these integrals are associated to the various Feynman diagrams

on the QFT side of the correspondence.

4.1 The string theory setup

We consider a stack of N parallel D(4_;)-branes, spatially separated from each other in
the directions perpendicular to their worldvolumes (Dirichlet-branes or ‘D-branes’ were
mentioned first in [95]; it is shown that they are innate to type II theories in [96]). This
breaks the symmetry of the worldvolume theory from U(N) to U(1)" [97]; the theory is in
the ‘Coulomb phase’. Furthermore, each of the D-branes has a constant U(1) background

field in the z1—x9 plane, whose field strength is equal to

F;iz/ =B’ (77;117721/ - 77,u277ul) . (4.1)

When the D-branes are displaced from each other in the transverse directions (which
amounts in the worldvolume theory to giving the massless scalar fields a vacuum expec-
tation value (VEV) [07]) then the factor of the integration measure corresponding to the
scalar sector of the spacetime theory must be modified by multiplication with a factor
giving the contribution from the tension of strings stretched between two non-coincident
D-branes. We are considering a system of N parallel D;_;)-branes whose coordinates
in the transverse directions are given by (Y7) = (Y{,... ,Y]{,s) (see Fig. . A string
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Figure 4.1: A stack of N parallel, separated D4_1)-branes with background fields.

YIN Y} -

Figure 4.2: The positions of the N D(4_1) branes in the z;-x; plane.
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stretched between the ith and jth branes will have squared length

Ns

V2= (Y] —Y{)?, (4.2)
I=1

and will receive a classical contribution to its mass from the elastic potential energy asso-

ciated with the stretching of the string,

miy = (T¥y)? = =2 (4.3)
where T is the fundamental string tension and o’ is the related Regge-slope. Open strings
that start and end on the same D-brane are uncharged and their mass is independent of
Yl

The constant background magnetic fields on the D-brane worldvolumes manifest them-
selves in the worldsheet picture by altering the boundary conditions of the worldsheet
CFTs. On the double cover of the surface, this gives twisted periodicities, ¢.e. non-trivial
monodromies, to the zero modes in the two magnetized space directions, as described for
bosonic strings in e.g. [84], 85, [86] and [87] and superstrings in [88, R9]; we follow the
approach in section 2 of [92] and section 2 of [94]. This can be seen most readily in the

path integral formalism.

4.2 The superstring partition function for the NS sector

The superstring vacuum amplitude for the NS sector of an h-loop open superstring with
Neumann boundary conditions can be found in Ref. [9] in terms of super Schottky param-

eters, and may be written as

h

0o 1 dk; du;dv; (0)
[dm]h B AV uyvy 1:! /{73/2 Vi—u; th(m) Fgl (m) ' (4'4)

In this expression, k;, u; = u;|6; and v; = v;|¢; are respectively the multiplier and the
attractive and repulsive fixed super-points of the super Schottky group generator S;. The
argument m in Eq. denotes all of the moduli k;, u;, v;|0;, ¢s, i = 1,..., h.

In fact, there is an ambiguity in Eq. , because the half-integer power of k; could
indicate either of two branches of the function. The notation is to be understood in the
following way: that kﬁ indicates the smallest (in absolute value) of the eigenvalues of
S;, and can therefore be either positive or negative. In fact, we will see later that the
implementation of the GSO projection is equivalent to summing over all four possible
pairs of choices of sign for kﬁ

The notation v; — u; means the supersymmetric difference,

Vi —u = —u; + 0;0;. (45)
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The factor

1 - - -
_ Vi w)(u = va)(ve = i) 1Oy e, (46)
dVv1u1v2 dVlduldVQ

takes into account the super-projective invariance of the integrand, which allows us to fix
three bosonic and two fermionic variables. ©y,u,v, is the fermionic super-projective invari-
ant of the three fixed points, which first appeared in ref. [39] and is given in Eq. (2.218).
As a consequence, if we specialize to h = 2 loops then the factor in square brackets in
Eq. which we will call dyu can also be written as

dp = =
H dVV1U1V2 ey k?/Q v; — u; ki}/Q kg/? Vo - Uy

1 2 dk dwdvy  dky dks dusd©y, v, \/ (a1 = vo)(va = v1) wn

Vi — Uup

As discussed in Ref. [98], it is important to specify the bosonic variables that are kept
fixed when performing the Berezin integration over Grassmann variables. In the super
Schottky parametrization, the objects entering in the NS vacuum energy, Eq. (4.4), can

be expressed as [9]

N (e N et YR = 2 A
Fen(m) = (1_k1;)2(1_k2;)21;[H< ) , (48)

_1\P
Fgl))(m) = [det(Im‘r)} H,H<11k0‘kn , (4.9)

T is the super-period matrix, discussed in section The notation H; is defined after
Eq. (2.248).

A multiplier k, depends only on the supertrace of the OSp(1|2) matrix corresponding to
Sa (see Eq. and section . Since a supertrace satisfies the same cyclic property
as a trace, and a super-projective matrix and its inverse have the same multiplier, k, is the
same for every element in a primary class and so Eq. and Eq. are well-defined.

Note that as in Eq. , the multipliers k, appear in this expression with half-integer
powers. These are to be understood similarly, i.e. k, denotes the smaller (in absolute
value) of the two eigenvalues of T,. k, may be positive or negative. Each of the k,’s
can be expressed as an algebraic function of the (super) moduli (including the k:i%’s for
i = 1,2), and when we vary the signs of the ki%’s to carry out the GSO projection, the
signs of the ka% ’s will also vary due to their dependence on kl%

Since we want to compute vacuum amplitudes for open strings on parallel D(d—l)
branes, we need to alter Eq. to reflect the Dirichlet boundary conditions in Ny =
D — d directions. This doesn’t affect the orbital modes which enter Eq. via the
infinite product, but the factor of [det(Im 7)]~P/2 which arises from the integral over loop
momenta should be modified by replacing D — d. Anticipating that the factor from the
Ny transverse directions will be the origin of scalar fields in the D-brane world-volume

theory, we write

FOm) - F9m)FY (m), (4.10)

gl g scal
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1 d

R B
l;IH | (4.11)

(0) . g 1-— ka72
Fscal(m) = H H W . (412)

0)

In the presence of a constant background gauge field, the factor Fél in Eq. (4.11

gets modified, since string coordinates with Neumann boundary conditions propagate in

space-time and are sensitive to such backgrounds. The relevant modification to the bosonic
theory was derived in [16]. Using the same techniques, developed and described in [51]
16l [94], it is possible to generalize this construction to the Neveu-Schwarz spin structure
of the RNS superstring. Switching on the background field amounts to multiplying Fgl))
by a factor which depends on the twists € = (€1, €2) which are related to the strengths of
the background fields on the three boundaries via Eq. . In terms of this, we have

F()(m) - Fif (m) = R(m, & FY (m), (4.13)

where, assuming that the constant background field strength is non-zero in only one plane,

we have

1
det (Im 7) / nf? —2
— —17'('67'6 414
Rim, 0 = crere STl TP [k ) (a.19

a n=1
)(1 . e—2i7r€~‘r~]\7a k;h%)
(1 _ 627ri€-7'-]\7a kg) (1 _ e—27ri€-7'-]\7a kg) } ’

N

(1 _ e2i7r€'~7'~Na kai

The h-component vector N, has integer-valued entries: the i-th entry counts how
many times the generator S; enters in the element of the super Schottky group T.; we
define N = 0 for T, = Id and N} = Né +1 for T, = SiﬂTg.

Inserting Eq. (4.14)) in Eq. (4.13)), we see that FS) can be factorized as the product of

two terms

F()(m) = F (m)F{? (m) (4.15)

where F(f) is equal to Fgl)) with the replacement d — (d — 2), and all dependence on the

background field is contained in F‘(lg) which reduces to Fgl)) with the replacement d — 2 in

the limit € — 0. The notation is motivated in anticipation that in the QFT limit, F‘(f) will
be the origin of gluons polarized in the plane of the background magnetic field, while F |

will be the origin of gluons polarized in the transverse directions. To be precise, we have

0 T2
a n=1
F(g) _ e ImET € i1
”< ) det (Im 7) (4.17)
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o 2iméT - Na e %)(1 . ef217r€-‘r)-]\7a k(g—%)

0
H H e27rle~‘r~Na kg) (1 _ e—2ﬂi€T~]\7a k;g)

[e% n=1
When the D-branes are separated from each other in the transverse directions as in Fig. |4
FO
scal

found by following the equivalent calculation for the bosonic theory in ref. [99] with the

has to be multiplied by a factor accounting for the string tensions. The factor can be

only essential difference that the period matrix 7 is to be replaced with the super-period

matrix 7. We find

Fic;l - Fical) - y(mv m[) Fic;l ) (418)
Ns

= H eQTriOél’rﬁ[-T-’rﬁ[ . (419)
I=1

Here niy is a vector whose h = 2 components have dimensions of mass (but note that
they can be negative) and encode the stretching in the x; direction of strings propagating
around the two open string handles. If we say the homology cycle a; separates boundaries
on the ¢th and kth branes and the homology cycle ao separates boundaries on the kth and

jth branes, then it is given by i = (mZI] , m][k) where

ye —y?b
mab: I I

I = ; (4.20)

2o

As in Fig. 4.2 Y7 is the x; co-ordinate of the D-brane labelled by a. Note that m¢ I can

be positive or negative depending on the order of a and b. If we use m7 = —m’ICz — mjlk,

then we see that the factor depends only on the squares of the three m?b’s since

myp-T - -mp= (77’L,I“)2 T11 + (77’lek)2 To2 + ((77”LZIJ)2 (m][k) (mllm) ) T12 - (4.21)

It follows from Eq. (4.3]) that the squared masses m . of the stretched states are simply the
sums of the squares of the m’ I ’s. Therefore the product over the Ny transverse directions

in Eq. - can be easily evaluated and we arrive at an expression for J(m, ;) in terms

2.
i

of the squared masses m;
Y(m,m) = exp [27r10¢ <m,ﬂ7'11 + m]kTQQ + (m QJ — m?k — mii)ng)} . (4.22)
In our setup, then, the integration measure in Eq. (4.4]) is modified to

[dm]3 ™ = dp By (m) B (m) B, (m) B2 (m) (4.23)

scal

where d is defined in Eq. 1.; Fyy, is defined in Eq. 1; F‘(f’ is defined in Eq. (4.17),
4.18).

F, is defined in Eq. 4.1 ) and F:Z;l is defined in Eq. (4.1
In fact, all of the factors in Eq. (4.23) are invariant under super-projective transfor-

mations of the fixed super-points. We can use this to fix 3|2 of them; a convenient gauge
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is
u; = 0‘0 V1 = OO|0 U = u|¢9 Vg = 1|¢7 (4.24)

which leads to

Oviuive = @, vo-uw=1—u+0¢, \/(u1 . VQ).(VQ = Vi) =1. (4.25)
Vi —up
Inserting these in Eq. (4.7]), we can write the measure finally as
e dky dke du z -
[dm] ™™ = 25 =2 = d0dg Fy(m) F|) (m) F 1 (m) Flfy(m),  (4.26)
Tk Y
where we’ve written

Y= Vuyviugvs = 1 —u+ 06, (4.27)

which is the sewing parameter for the separating degeneration; the super-projective in-

variant cross ratio \T/zmz324 is defined in Eq. (2.219).

4.3 The field theory limit

4.3.1 Expanding in ki%

We are interested in computing the o’ — 0 limit of the superstring amplitude. The measure
includes a product over infinitely many primary classes in the super-Schottky group, with
infinitely many powers of each; similarly the expression for super-period matrix includes
a sum over infinitely many Schottky group elements. But all of the terms in the measure
Eq. can be expressed in terms of the 3|2 moduli of the SRS, and we can write them
as series expansions in the multipliers kﬁ

A term in the kzé power series expansion of the measure has a natural interpretation as
the term associated to string states of a particular excitation level propagating around the
loops; a term proportional to dk; k?/ 2 corresponds to the (n+ 3)th excited level. Therefore
all terms with n > —1 get squared masses m2 = 75:/2
limit o/ — 0. Since du in Eq. includes factors of the form dk;/ k:?/ 2, it is necessary
to compute Fg,(m), F‘(f_j (m), F, (m) and chlél

the full QFT amplitude.
This is aided by the fact that the multipliers of all but finitely many super-Schottky

and become infinitely heavy in the

(m) only up to terms of order kz% to get

group elements vanish at order klékgé, so the infinite products and series reduce to finite
sums. This is because the leading-order behaviour of the multiplier k, = k(S,) is related
in a simple way to how many times the generators S; and their inverses appear in the

reduced word corresponding to S,: we have

k(SE1S,) € O((kika)?) (4.28)
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if the left-most factor of S, is not Sfl. Thus, the square roots of multipliers of every
super-Schottky group element not in the primary class of one of Si, So, S1So, SIISQ
vanish at order k:lékgé.

We can compute expressions for all of the factors Fgp(m), F‘(‘a (m), F;(m) and

ngél(m) at order k12ks2. We will begin with Fgy, defined in Eq. 1) Most terms

can be neglected: every term in the infinite product differs from unity only by terms of
order at least k?/ 2, and the numerator of the fraction by terms of order k;. It becomes

simply
Fon(m) = (1+ 2k;12)(1+ 2ky2) + O(ky) . (4.29)
Next we find F, defined in Eq. (4.16)). It is given by
F, = [det(Im7)] "7 (1—(d—2)ki?)(1— (d - 2)ko?) (4.30)
1 1
% (1= (d—2)k(87782) 7 ) (1 - (d = 2)k(8182)7) + Ok

or if we expand the ka%’s as in Eq. (2.231) and Eq. (2.233]), we find

d—2

F, = [det(Im7)] "2 {(1 —(d—2)k13)(1 — (d — 2)ks?) (4.31)

4 (d— 2k T k3 % —(d— 2k ko3 y} +O(ky) .

The ki%—expansion of det(Im 7) is given in Eq. (2.243)), which leads to

_d-2 4r?) 3
[det (ImT)] > = () > )
(log k1log ko — (logu)?) 2

1 1
y k12 log k1 + ko2 log ko
1—(d—2)= 0 k).
% ( ( )ulogkzllogkg—(logu)2 ¢)+O( w)

(4.32)

F‘(‘éj from Eq. (4.17). The first factor can be found using 7

Next we should calculate

from Eq. (2.242) and is given by

T . 1
e ITETE = |2 |y 2y <1 _ %(l@%e% + k? e%)9¢) + O(ky) . (4.33)

det(Im 72)~! can be found by inverting the right hand side of Eq. (3.59)). The remaining

factor is given by

L _1 Lo _1
o e217re-T~Na k’g 2) (1 o e_217T€‘7"Na e 2) (4 34)

i : ~

et (1 _ e27ri€-T-Na kg) (1 _ e*27fi€'T'Na kg)
= (1= B (R o RO

— 2610¢%k2%(k?u62 — k:l_elu*”))>

x (1= kad (kg + kg
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1
- 2620¢gk12 (kSu — kQ_Qu*El)))
u
— k2 ko7 (KRR U2 4 kU ky w2y

s d (kg u e ke ) L o)

Lastly, we need to find an expression for FS:; ), defined in Eq. (4.18)). We can use Eq. 1’

to expand ) in the kﬁ using the expression for 7 in Eq. (2.242)), we get

Y(m, i) = kRS ™ 0 (m—mi—m3) (4.35)

X (1 + 20/%]@% m3 + ka2 m%)) + O(ky) ,

where we’ve renamed (mii,m?k, mfj) — (m2,m3,m3). The remaining factor in Féf;f) is
given by
(0) 1 1 1,1y 1,1
Fscal(m) = (1 — Ny k12)(1 — Ny k22) + Ngk12ko2 a — Nok12ko2 y + O(ku) . (4.36)

We now have all of the factors of Eq. (4.26]); they can be combined to give an expression

for the full integration measure,

_d=2
a0 = Y ke du o [det(ImT) ] 3
2= kzl’,/Q k;/z y det (Im 77)
62 62
k?/m% kglm% ua/(mg_m%_mg)kl—%kz—%u—elsz (4.37)

X {(1 — k2 (d— 2+ K u® 4 kY + N, — 2))
x (1= ko (d =2+ K + ;=™ + N, — 2))
x (1 - %(lﬂ%(e% —2a'm3) + ka3 (e — QO/W%))%)
bty (42 kO T
Tk Tkt %(d_2+]\fs—2
+ 2(er (k' u? — by u”?) + e(kS2u — ky Pum))
R 4 A Ry ) b O

4.4 A symmetric parametrization

The integration measure in Eq. is not, however, written in the most symmetric way
possible, since two of the bosonic moduli klé and kgé are multipliers of super-Schottky
group generators, while the other modulus u = 1—y+#6¢ is a cross-ratio of the fixed points.
This makes it hard to find the field theory limit. To present the integration measure in
a sufficiently symmetric way, we should try to write it so it is has the same form under
permutations of the super-Schottky group elements Si, So and SIISQ. The reason for
this is that the homology cycles a1, as and (af1 - ag) lift to these super-Schottky group

elements on CP'I" — A, but any two of a1, as and (al_1 - az) (along with the appropriate
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Figure 4.3: Two types of homology cycles on the double annulus.

choice of b-cycles) constitute a good canonical homology basis (see Fig. . Any other
homology cycle built out of a cycles will intersect itself (e.g. (a1 - az), see Fig. [£.3D]). Our
choice of S; and Sy as the generators is arbitrary, so in order to be modular invariant, the
measure should be symmetric under permuting among Sy, So and SIISQ.

A natural way to symmetrize the measure is therefore to use the multiplier of S;lsz as
the third bosonic modulus, instead of u. If we use /6‘3% to denote the smallest (in absolute
value) eigenvalue of S1S; ' (so k3 is its multiplier), then it can be found implicitly from

the relation

(1= k) (1 — ko) + 06 [(1—k12)(1 — ko2)(1 + klékgé)]
1+ kiks — k1 2ko? (k2 + kg~ 2) '

y = (4.38)

Although these moduli are symmetric, they are not the most appropriate for investi-
gating the symmetric degeneration, because the worldsheet pinches at two points on each
of the cycles aq, as (al_l - az). Instead, we should define the moduli p;,—or rather, their

square roots, /p;—with

o=
o=
o=

k1

= =™ /piVps  ko? = =€\ /payps ks =—eTS/prypa.  (4.39)

The /pi’s are defined always to be positive, and the fact that the k:a%’s may be either
positive or negative is allowed for by the inclusion of ¢; € Zs, the spin structures associated
to the two b;-cycles. g3 is the spin structure around the b3 homology cycle and it is given
simply by 03 = 01 + 02 (mod 2).

In this way, each of the p; behaves as a sewing parameter for one of the three NS
degenerations.

To see that the — signs in Eq. are necessary, we note that whether k:lé and k’gé
are both positive or are both negative, ]{73% is negative, which is why there must be a —
sign in the third expression. Then by symmetry, there should be a — sign in all three
expressions.

The measure expressed in terms of the p; is symmetric overall, but it’s not symmetric
within each sector (Fgp, Fgi, Fscal) under swapping p3 <+ p1 or p3 <+ pa, which it must be
in order to obtain matching with QFT at the level of Feynman graphs. For example, with
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the moduli (p;|0, @), the factor within the square brackets of Eq. (4.4) is given as

dk, dk dp; dpa d 1-—
—lidlogydﬁdqb:ﬂﬂﬁdegb pip2

kzla/z k:;/z p§/2 pg/Q P3 (1+p3)(1 + pipaps)

(4.40)

The reason for this is that we are allowed to rescale the odd moduli by arbitrary functions,
because the Berezinian of the transformation will cancel the rescaling and preserve the

Berezin integral:

o dé

d0do 0 =
000 = 1 0110.9) Tolpil0. 9)

0fo(pil0, 9)0fs(pil0,¢) = dOdp 0. (4.41)

Even if there are natural odd moduli which make the symmetry manifest, a different
choice of moduli which is related to the natural choice by an asymmetric rescaling will
typically shuffle contributions between the various factors of the integrand, despite not
changing the Berezin integral. Our odd moduli 6, ¢ must not be the natural choice, which
is unsurprising because they are super-projective invariants of the fixed points of S; and
So only.

It is therefore necessary to find a pair of odd moduli which is invariant under permuting

among S, So, SIISQ. To do this, we can define

Hij = CGij Gviuiuj ) Qgij = Cij GViuiV]’ s (442)
for (ij) = (12),(23), (31), where

cly = [(1 +ei7r§3\/p>1\/p>2) (1 _ ei7r<1 \/171\/173) (1 _ eiw<2\/]72\/p>3)]*1/2 ’ (4‘43)

with co3 and c3; obtained by permuting the indices (123). We've written ¢3 = ¢ + <2,
u3 and vj label respectively the spin structure and the fixed points of the transformation
S;lsg. In terms of these new Grassmann variables, Eq. , multiplied with the massless
contribution of the ghost sectors in Eq. , reads

1
dp; 1+ki2 | ~ o 1
dfqo d _— 4.44
Z-H1 [pf’/z iin | P A, (144
One can check that
df19 dgra = dbaz doz = bz dea (4.45)

so that Eq. (4.44]) is fully symmetric under permutations of the super-Schottky transfor-
mations S, So, SI_ISQ as expected. The various factors of the integrand can be expressed
in terms of the variables (pi\élg, (]312); to write them in this form, 8¢ can be expressed as

follows:

= p3(1 +p1)(1 +p2) imc3 L ims _ims h 1
’0= \/(1 + p3)(1 + p1p2p3) (14 €™ y/pip2) (1 = ™ y/p1ps) (1 — €72y /p2ps) 12012

(4.46)
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= /p3(1 + ™3 /pip2) 12012 + O(p;) (4.47)

Up to O(p;), the only contribution to Fgy, in Eq. (4.29) came from the zero modes; these
have been included in Eq. (4.44)), which becomes

3 1
dp; 1+ k;2 A 2 1
du Fo (1) — PP — 448
o Fgp(m) E [p?/z VIFp; 124012 1+ p1paps ( !
3
dp; Ao ir i im
= H [ 3];2] dbh2 dgr2 (1 — €™ /p1ps — €2 \/paps — €73 /p1p2) + O(p;) -
i=1 LP;

We can make expressions more symmetric if we implicitly include the spin structure in

the square roots, to be reinstated later when we carry out the GSO projection, by writing

V1 = €™ /p1 VP2 = ™2, /py VD3 = /D3 VITY = VY (4.49)
so the right-hand side of Eq. (4.48)) becomes

—_—~

S Tdp | .~ -
11 [:52] dbi2 g2 (1 —/P1P3 — \/P2p3 — \/plpz) + O(p;) - (4.50)

=1

i

The twisted gluon sector comes from Eq. (4.32). To write it down in terms of the p;, we

need to make use of the substitution

u=ps(1+ 91%512(\710: - \71011 - \/Apiﬂ- \/;1;9;173)) + O(p1,p2) + O(p3), (4.51)

which can be found by inserting Eq. (4.38]) in u = 1 — y + ¢ with the substitutions in

Eq. 1) and using Eq. 1) to rewrite 6 and ¢ in terms of 615 and ¢12. We find that
the contribution from the orbital modes, coming from Eq. (4.34), is given by

1+ {\/le (05952 — Py D) — O12d12y/D3 (€1 — €2) (05" Py 2 — Py 2p3)]

+ cyclic permutations of (p;, el)} + O(pi) . (4.52)

where €3 = —€; — €2. The exponential factor, given in Eq. (4.33), becomes

2 2
—ingre_ —& —% -3 ls s Pipa
e TMETE = 2, Ty 2 (1 — 5912¢12 (\/171(6% — € —€3) + /Pipeps €]

+ cyclic permutations of (p;, ez)>> +O(pi). (4.53)

The twisted determinant det (Im 7%), given in Eq. (3.59) can be expressed in these moduli
by making the substitution Eq. (4.51]) in the hypergeometric functions, which yields

(a —€1)(b—e€2)

C— €] — €

=1+0(pi), (4.55)

QFl(CL—El,b—eQ,C—El—GQ,U):l-l- u+(’)(u2) (4.54)
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and we find that det (Im 77) is equal to

1

€1 2 €3 _f __ €2 _ €3
det (Im 7z) = 47T2F(—61)F(—62)F( )(pf Py P (61]31 * +eapy * +€3py 2)
~ A — € _ €2 ‘3 _f1 €2 €3 €1
+912¢12{\/ (p2p2 *ps 2 +p 2y P )pf €2€3

+ cyclic permutations of (p;, el)}

a g9

~a ——~—— -39 32 33
+ 012012 /P1D2P3 P, 2Dy ? Py 2{2]0%621936361(}92 €2 + p5ies)

+r' ((621932 + e3ps’) ((62 +€3) PS DY’ + 2e3p5 + 26219263) pi'—

(6263103 PS4 2€3 (€2 + €3) P32 + 2€3 (€2 + €3) 253) P —

€2, €3

Py’ D5 ((263 + 3eger + 263) (—p§) PS + eresps + 6162p§€3)) })

+ (i <> —€,) + O(pi) - (4.56)

Next we want to find the ingredients for the untwisted gluon sector, which comes from

Eq. (4.31), yielding

—_—~

Fi = [det(im 7)] "% (1= (d—2)(Vpips + voams + Voip) ) + Opi).

(4.57)
where the determinant of the period matrix, coming from Eq. (2.243)), becomes
47% det(Im ) = log p; log pa + log pa log p3 + log p3 log py (4.58)

-2 él2<£12{(\/p>1 — \/P1p2p3) log p1
+ cyclic permutations of (p;, 61)} + O(pi) .

Finally, we need the ingredients for the scalar sector. The factor containing the contribu-
tion from the VEVs comes from Eq. (4.35) and is given by

s o - 12 a2 —
| | e27r1a’m1-7'-m1 _amy aimg am3
- M1

D1 Po (1 + o O12¢12 {\/ 1(m? —m3 —m2) + \/p1paps m?

+ cyclic permutations of (p;, m )}) +O(pi).  (4.59)

The other factor in Eq. (4.36]) is given as

HH( lﬂcNak é>N_1+N<N — —

1— ko VP1p3 + v/P2p3 + \/p1p1) +O(pi).  (4.60)
a n=1 a

Combining Eq. (4.59) and Eq. (4.60)), we get the total contribution from the scalar sector

2

2 P —_—— —~—
Focal = p(f mlpg mea m3 <1 + Ng (\/plp:s + /p2p3 + \/plpl)

+ a'O12¢12 ((w/pl(m% —m3 —m2) + cyclic permutations of (p;, 2))
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—_——

~ (N V(o 4 ) Biama) ) + O, (4.61)

Now we have expressed all of the factors of the integrand in terms of the symmetric p;, 612,
gf;12 moduli, so we can procede to compute the o/ — 0 QFT limit of the amplitude, where

we will find a 1-1 match between terms in the string integrand and Feynman diagrams.

4.4.1 Rewriting with field theory variables

To express the field theory limit of the amplitude in a form we can compare to our Feynman
diagram calculations, we replace integration over the moduli p; with integration over the

dimensionful Schwinger parameters t; via
pi=e€ o, (4.62)
and re-express the twist ¢, in terms of the background field strengths B; via
e =20/gB; + 0, i=1,2,3. (4.63)

The factor corresponding to the gluon modes parallel to the magnetic field can be found
by multiplying Eq. (4.52)) with Eq. (4.53|) and dividing by Eq. (4.56)), which yields

2 N2 —~—
Fﬁa (m) = m (1 + {2\/p1p2 COSh(QgBltl — QQBQtQ)

Afp

Slnh(gBltl)

-« 9124512 (\F-i- \/P1P2p ) cosh(2gBit1 — gBaty — gBsts)

+ cyclic permutations of (p;, t;, Bz)}> + (9(0/4) + O(pi),
(4.64)

where

h(gBi1t1 — gBaty — gBst
Ap = cosh(9Buts — 9Btz — 9Bsts) + cyclic permutations of (¢;, B;), (4.65)
29>B>Bs

while the contribution from the gluon modes perpendicular to the magnetic fields F |

becomes

d

2ra/)2 7! e T

F, — % (1 +(d— 2){\/2?1193 + /P2p3 + \/P1D2
A0

1 s — — —
— 012912 Ao (\/171?51 + /p2ta + /P33

—_~—

+d=3)amm 0+ ) ) + 0@ + 0, (160)

where

AO = t1t9 + t2t3 + t3t1 = lim AF . (467)
Bl'*)O
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The contribution from the D-brane world volume scalars comes from Eq. (4.61) and is

equal to

Fégf) = o tmielamietam; (1 + Ns<\/P1p3 + /P2p3 + \/p1p1)

+ a'B12¢12 <\/P»1(m% —m3 —m3) — (Ns — 1) m3/pipap3

+ cyclic permutations of (p;, m ))) +O(pi). (4.68)

The final factor, including the integration measure and the contribution from the ghosts,
is unchanged from Eq. .

The full integrand is the product of F| from Eq. , F, from Eq. 1D Fca from
Eq. and dp Fgy, from Eq. . We want to order the integrand by powers of /p;
because negative powers will correspond to tachyons propagating in the ¢th leg, which
we want to eliminate via the GSO projection, and positive powers correspond to massive
states which we expect to decouple in the limit o/ — 0. Let us define the power series

‘ PO
coefficients FTIJ via

SRS (V) (VR (V) B (1.69)

i,j,k=0

and similarly

(27?0/)d72 & —i =i =k

Fu= = > (vm)' (V) (vis)"FT* (4.70)

0°  i4k=0
3 o0 —_— . —_— - —_—

Foa = [[[7F] 32 (Vi)' (Vi) (Vi) By (4.71)

i=1 i,5,k=0
3 e e~ — - o~

duFg =[] [dg /2] dbraddre Y. (V) (vre) (Vs)" 2. (4.72)
i=1 i,5,k=0

We have then

? pl ft-mz 2 n *% -1
dpFgp F F L Fya = (2ma) H 3/2 il dbhador2 Ay 2 AR

x > (Vi)' (ve2) (vs) FVE (4.73)

1,5,k=0

where

"ij k k k k.
Fuk — Z F11]1 1 F12]2 2 F23J3 3 Fl4]4 4 5(zl+“.+i4),i 5(j1+...+j4),j 6(k1+...+k4),k- (4.74)

scal
ig,de,ke=
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4.5 The GSO projection

Now, if we view the amplitude as a sum over states propagating through the 3 pinched
cycles, which map onto Feynman diagram edges, then the power of |/p; corresponds to
the mass level of the state in the ith edge. To see this, we note that we have

dp; n 1 _n=ly
7 (V)" = — e85 (475

7

1ti

where dt; e~ 2 ¥ is a factor we would expect to see in a Schwinger-parameter propagator

for a field with squared mass m? = g;,l

edge will have negative squared mass, i.e. it will be a tachyon and we will remove it via

If n = 0 then the state propagating in the ith

the GSO projection. If n > 2 then the state will have squared mass m? = ”2;,1 > 0, which
will become infinitely large as o’ — 0 and therefore the state will decouple. For n = 1,
we find m? = 0; once the tachyons are removed and we take the limit o/ — 0, we expect
these states to give the only non-vanishing contribution to the amplitude, and so the sole
non-vanishing contribution to the field theory limit of Eq. comes from F111.

A cursory look at F|| in Eq. , F, in Eq. (4.66)), Fsca in Eq. and dp Fgy

in Eq. (4.50), might suggest that tachyons can propagate simultaneously in an arbitrary

—_—

number of edges because we can find terms proportional to 1, ,N/p »A/D1P2, /D1P2D3, - - -
and so on, which correspond to 3 tachyon edges, 2 tachyons, 1 tachyon and 0 tachyons,

respectively. A closer inspection shows, however, that the nilpotent object é12q312 multi-
plies a term if and only if there are an odd number of \/N]Ti’s (this property is preserved
when we multiply terms together). Since the Berezin integral over dbyo dg%lg picks out the
coefficient of 912¢312 , it follows that after carrying out the Berezin integral, each term must
contain an odd number of :/\/]TZ ’s.

After carrying out the Berezin integral but before carrying out the GSO projection,
the integrand truncated to O(,/p;) will therefore be a sum of four terms whose coefficients

are

VPL =Ny e = €™ ba; b3 = /Ps; V/pipaps = €7 T2) pipaps . (4.76)

There are four possible spin structures along the a-cycles:
(s1,2) € {(0,0),(1,0),(0,1), (1, 1)} = Z5 . (4.77)

We need to sum the amplitude over the four spin structures ¢ with the appropriate signs
0(<). The first three terms in Eq. (4.76)) correspond to tachyons propagating in loops;
since we wish to excise tachyons from the spectrum, the signs needs to be chosen so that

these terms vanish. We have

D o) e™ 1 = /p1(0(0,0) — 0(1,0) + (0, 1) — (1, 1)) (4.78)

9€z3
> o(&) €™ /P2 = +y/P2(0(0,0) + 0(1,0) — 0(0,1) — (1, 1)) (4.79)
gEZ3
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> 0(&) vps = vps(0(0,0) + 0(1,0) + 0(0,1) + (1, 1)) , (4.80)

2
g€Z2

and we need all of these to vanish, so we need to set
0(0,0) =0(1,1) = —0(1,0) = —0(0,1). (4.81)

A suitably normalized GSO projection is given, then, by the weighting o (<) = 1 gim(sitea),

For the remaining term, this gives

Z a (<) ei“(“+g2)\/p1p2p3 = /P1DP2p3 , (4.82)
gEZ3

and so after carrying out the Berezin integration and the GSO projection, we are left only
with the massless sector, entering Eq. 1’ via the term F111,
The amplitude is obtained by integrating the measure du Fg, F|| F | Fyca) from Eq. (4.73)

and multiplying by an overall factor

2
1
A=C £[1 <cos(7rel)

' ) /du th F” FJ_ Fscal (483)

where C},, the normalization factor for an h-loop string amplitude in terms of the d-
dimensional Yang-Mills coupling g, is calculated in Appendix A of [100] and is given for
h =2 by
1 9> (o)
9 d 2( 1\2 _ ‘
2z o)) (4m)d (2ma’)d

Cy = (4.84)
. . -1 12

The other prefactor in Eq. 1' is equal to (cos(mer)cos(mez)) = 1+ O(a’") so we

can neglect it in the field theory limit. Plugging Eq. (4.73) into Eq. (4.83]) with the GSO

projection carried out, we find

[dpl o ] b1 dgra Ay = AG'FM +0(a)) + O(eH*)  (4.85)

Using dp;/p; = —dt;/a’, we find that the QFT limit is given by

A = lim A 4.86
QFT = alg(] ( )
dt timg 1 - -~
47r / [ e ( - /de12 i F“1> , (4.87)
A AF
If we write
fu]lkl fﬁzjzk’z fmsk:s fs’béliszl _ = / d012 d¢12 Fzmllﬂ F'll‘2]2k2 F13]3k3 F;‘éﬁk“ , (4.88)
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with

000 __ ¢£000
fon = 1)

then from Eq. (4.74) we see we have

1 R N~
_a/ dfyo Ao FIF =

Substituting this for Flll in Eq. 1| we get

tm?
47T /HZ 1dt e~ {

Aqrr =

o0

i0,Je,ke=0

— £000 _ £000

ca.l_1

scal

k1 piojoks pisjsks piajak
{flljl 1 f 272k2 f 373k3 f 4Jaka
§ : gh 1

X 5(i1+...+i4),i 5(j1+...+j4),j 5(k1+...+k4),k} :

ig,J¢ ,ke

AAF

i151k1 pizjoks pisjsks piajaka
fgh fH fJ_ fscal

X O(iyttia) 1 O+ ta) 1 5(k1+...+k4)71}

g /H?:l dt; e tim? {fm
- d d—2 I
(477) AO2 Ap

We can read off the various terms in the integrand by picking the coefficients of the

appropriate \//797’5 from F| in Eq. 1} F | in Eq. 1' Fgea in Eq. |D and du Fgy,
in Eq. () and writing down the coefficient of 012 qglg, divided by o’. We have

110001

001¢110 _
111 _
£ =

110001 _

fllOfOOl

110001
f fscal

f110f|001 _

scal

110001
fscalf

110001
f|| fscal

110001
f fscal

111
fscal

flll _
| =

+ f'”llof?_01 + ... (25 more terms)} .

— gBaty — gBsts)

(4.89)

(4.90)

(4.91)

(4.92)

(4.93)

+ cyclic permutations of (¢;, B;) ,

cosh(2¢gBsts — gByt1 — gBats)

cosh(2gBsts — gB1t1 — gBat2) ,

cosh(2gBsts — gBit1 — gBata) ,

mg) cosh(2gB1t; — 2gBsts) ,

2 sinh(gBit;)
e Uit h(2¢gBit
A B cosh(2¢B1t;
2(d —2
= (A) cosh(2gB1t1 — 29 Bata) t3
0
2(d — 2) sinh(gBst3)
Ap 9Bs
d—2)(d—3
M(ﬁ +to +t3)
Ao
2 sinh(gByts)
Ar  gBs
_d-— 2t
AO 3
= m% — m% — m% s
2NS Sinh(ngtg)
Arp  gBs
(d —2)N,
72&33
Ag
2(m3 4+ m3 —
(d—2)(mi +m3 —m3),
(Ny — 1)(m? +m3 +m3).
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(a) (b) (c)

Figure 4.4: Possible topologies for 2-loop vacuum graphs with 3- and 4-point vertices.

(a) (b) (c)

Figure 4.5: Three possible topologies for a double annulus with at least two pinched cycles:
non-separating (Fig. , separating (Fig. 4.5b) a,nd incomplete (Fig. 4.5c).

The other terms in the integrand can be obtained from these by cyclic symmetry, i.e. f”lOlinl

can be obtained from f”Hij)_Ol in Eq. by cycling (t1, t2, ts; B1, Ba, Bs) — (ts, t1,t2; B3, B, Ba),
and so on.

Eq. doesn’t give the full 2-loop vacuum amplitude with this topology, because
it is calculated with the worldsheet boundaries on 3 fixed D-branes (i.e. fixed Chan-Paton
factors). To calculate the full amplitude, it is necessary to sum over all possible choices of
D-branes for each of the three boundaries. Since the D-branes are distinguished only by
the strengths of the background fields on their worldvolumes B? and their relative positions
in the transverse directions Y[ij , this is equivalent to summing the preceding expressions
over all possible values of BY and min . That is to say, the full contribution to the vacuum

amplitude from diagrams with this topology will be given by the sum

N

Aqrr = g (AQFT‘ B1=B%, By=Bi* By,—Bki ) ) (4.105)
1,5,k=1 m%:m?j, m%:m?k, m3=m2,

where a string stretched between the ith and jth D-branes feels a background field pro-
portional to BY = B® — BJ and has a classical mass of |m;;| (recall Eq. (4.3)).

4.6 Incomplete and separating degenerations

The integral calculated in the previous section corresponds to the sum of all two-loop
QFT diagrams with the topology of figs. Fig. [d.4al The full 2-loop vacuum amplitude
includes other Feynman diagrams with the topology of Fig. i.e. with a quartic vertex,
and 1-particle-reducible (1PR) diagrams with the topology of Fig. We don’t need
to calculate the 1PR graphs to compute the effective action, but it is crucial to include
the diagrams with quartic vertices. There are two topologically distinct ways a double-

annulus worldsheet can totally degenerate: the non-separating degeneration of fig.
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and the separating degeneration of fig. the QFT limit of the string amplitude also
gains contributions from the incomplete degeneration in fig. where only two homology
cycles are pinched; this interpolates between the two total degenerations. The separating,
non-separating and incomplete degenerations all come from the region of super-moduli
space in which the two Schottky multipliers k1 and ko are small; the degenerations differ
in the value of the third bosonic modulus u (or y), which is a super-projective invariant
of the four Schottky fixed points. The separating degeneration corresponds to the limit
y — 0 while the non-separating degeneration corresponds to the limit v — 0, while the
incomplete degeneration comes from the rest of the moduli space.

When we truncated the measure to low order in the p;s, we actually excised the con-
tribution from the incomplete degeneration and from the separating degeneration. It is
therefore necessary to retrace our steps to the measure expressed in terms of k, and u (or

y) in Eq. - Not counting the factors on the first two lines, the expression contains

1
5 types of terms some proportional to either k:2 or k2 on their own; some proportional

to —7k:2k‘22 = k2 —|— (’)(k: ); some proportional to yk2k22 = k(S 82)2 + O(k,), and some
proportional to k‘l k:2 without these prefactors. Retracing the calculation of the previous
section, we find that the terms proportional to k%, kQ% and —%klé kQ% are transformed into
terms proportional to \/p1p3, \/p2p3 and /p1p2, respectively. The other two types of terms
— those which originate from S;Ss or those which are a product of a factor coming from
S; and a factor coming from So — disappear as O(p;) corrections.
They do, however, contribute to the QFT limit; we hope that they give the remaining

Feynman diagrams. Since the worldsheets no longer have a three-fold symmetry, we don’t

have to worry about needing a three-fold symmetry parametrization. The idea, then, is
1 1 1

to remove from Eq. (4.37) the terms proportional to k2, k2 or k':,? which we've already

accounted for in the p; parametrization, relate k1 and ko to Schwinger parameters as we
did with the p; for the non—separating degeneration, and integrate over the third bosonic
modulus. We split [dm]s from Eq. ( up into a part [dm]y”"*P whose QFT limit is

rem

already accounted for, and another part [dm] which vanishes at O(p;).

[dm]3 = [dm 5P + [dm]5™ (4.106)
d—2
v dk1 dkg du [det (Im ) ] T2 11
1002 1oy 2 5% 62
s gty By

x {(d — 2 kS 4 kw2 + N — 2)
X (d— 2+ k$u + ky 2u” + Ny — 2)
= y(d = 2+ K RSuE T2 4 N) b+ Ok

& -4
H [ d;;; :| délg d(£12 [de(géirgll;)jg) (0 + O(pﬂ) . (4_108)

To find the field theory limit of Eq. (4.107)), we replace integration over the two multipliers
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k, with integration over dimensionful Schwinger parameters similarly to Eq. (4.62) but

here we have only two:

tu

ky=e o, n=1,2; (4.109)

we also replace €, according to Eq. (4.63). Making these substitutions in det(Im7) as
given in Eq. (2.243) and det(Im 77) as given in Eq. (3.59)), we find

[ det (ImT)]_% = ((2770/)2);1_1 +O((a")*h) (4.110)

tito
9B 982
sinh(gB;it;) sinh(gBata)

det (Im75) ! = (2ma/)? +0((a)?). (4.111)
Performing the sum over spin structure as in Eq. (4.81) (where we recall that the spin
structures are not exhibited explicitly but are implicit in the signs of klé and ]{72%), the

integrals over the multipliers dk, become

1. dk; dkg 1 1 1
i + —
Z Ze m(s1te) W W kf k22 = W dtl dtQ . (4112)
¢ 1 R
The factor in the second line of Eq. (4.107]) becomes
a'mi, o'm3 o/ (m2—m2—m3) _é _é —€1€ —t1m? —tom?3 /
ky kg Pt \TSTTITMR)E 2k, 2 TR = 7T L O(d), (4.113)
and we have
k{'u® + ki “lu”? = 2cosh(2gBity) + O() (4.114)
kS2ut + ky 2u™ = 2cosh(2gBats) + O() (4.115)
ES E2u e + kg 2um 12 = 2cosh(2gB1ty + 2gBats) + O(d) . (4.116)
We can rewrite Eq. (4.107)), then, as
om ona/)d (2 dt;e~ti™ g B
[dm]5™ = ((,)2) Tl dudvas (4.117)
« -1t sinh(gB;t;)

1
X {—(d — 24 2cosh(29Bit1) + Ns — 2)
Yy
X (d — 2+ 2cosh(2gBata) + Ng — 2)

— (d — 2+ 2cosh(2gBity + 29Bats) + NS)} +O>e /Y + O().

Inserting this measure in Eq. (4.83]) with the normalization constant given in Eq. (4.84))

as we did with [dm];”" P, we obtain

o _ piy 9 ﬂ[ m]5e (4.118)
QFT ™ 50 (4m)? (2md)d 2 '
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2 4

_ 92 00 dti e tzm% ng (4 119)

= and [ AT ] '
pal sinh(gB;t;)

X {Il (d — 24 2cosh(2gBit1) + Ns — 2)
X (d — 24 2cosh(2¢gBaty) + Ng — 2)
— Ip(d — 2 + 2cosh(2gBity + 2gBats) + Ns)} .

Where I; and I3 denote the two Berezin integrals

11:/ 49 de IQZ/A dudf de. (4.120)
D’Jtu|9¢ y Wtuh%

These can be calculated with Stokes’ theorem for a supermanifold with a boundary (see

section 3.4 of [83]). We can reexpress them in terms of integral forms:
1
I = /A du — 62(d6, do) I = /A du 6%(de, do). (4.121)
Myjop Y Mujos
but these integral forms can be expressed as exterior derivatives:

GZ“‘ 62(d6, de¢) = duy ; du 6%(de, dp) = dvs ; (4.122)

v1 = —log(y) 6(d6, d¢), vy = u6%(df, de). (4.123)
The integrals can therefore be replaced with integrals over the boundary of ﬁqus’ which
is just the two loci u = 0 and y = 0, with opposite orientation. The log(y) in v; diverges at
y = 0 so we will regulate by evaluating I; at y = ¢ then taking € — 0. The measures need

to be expressed in terms of the appropriate bosonic moduli for each boundary component,

so for u — 0 we need to write

v = —<log(1—u)+16_7¢u

) 52(df, dg) . (4.124)

This gives us

f= [ = [ == [log(e) a6, o) + [ (ox(1) +0) 826, 0
= — /d0 do log(e) + /d& dpbo = —1 (4.125)

where in the last line we used the usual Berezin integral. There is no dependence on the
cutoff . Similarly, to compute I> we need to express v as 1 — y + 6¢ near y = 0, and we
find

= vy — vy = 2 — .
12_/yzo /Fl /(1+0¢)6(d9,d¢)) 0 (4.126)

0

_ /d0d¢(1 +0¢) = 1. (4.127)
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Inserting the values for I; and I from Eq. (4.125) and Eq. (4.127)) into Eq. (4.119)), we
obtain an expression for the remaining part of the field theory amplitude.

2 00 2 —t;m?
rem __ g / [ dtie v gBi :|
FT = — —— (4.128)
@ (4m)® Jo paie td/2 ' sinh(gBit;)

X { (d — 2+ 2cosh(2gBit1) + Ns — 2)

x (d — 2 + 2 cosh(2gBats) + Ng — 2)
— (d — 2+ 2cosh(2gBity + 29Bats) + NS)} .

We can retrace our steps of the calculation and express this in terms of the various world-

sheet CFTs the terms originated from as we did for the non-separating degeneration in
Eq. (4.91); we find

2 o0 2 —t;m?
rem 9 [ dt;e "™ gB; } {
T (4 /0 e B!+ £ + £ (4.129)

sinh(gB;t;)
(610 + 10+ £19, + £10) (£ + £91 + £2L, + fgg)},

where
fH = 2cosh(2gBit1) fl0=d—2 £19 = N, £ =-2 (4.130)
f'! = 2cosh(2gBats) fl=ad-2 £l = N, £ =—-2 (4.131)
fi' = —2cosh (2g(Bit1 + Bata)) fl' = —(d—2) fi = —Ns. (4.132)

Note there is no contribution f1': this corresponds to the fact that in the infinite product

gh’
in Fgy,(ki,n) in Eq. (4.9 -, n ranges from 2 to oo, not from 1 to 0o as in Fg and Fi,, and
therefore there is no term proportional to v/k(S1S2) in that CFT.

The second line of Eq. (4.129]) can be factorized; we can write

2 0o 2 —t;m?2
rem g / dt; e "™ gB;
= -2 £l f + £ (4.133)
Qrr (4m)® Jo [il tf/Q_l sinh(gBiti)} { | Scal}

2 2
1 ©dt, e U™ gB» . . )
_ 42 i i e ; ;
! H [(47)(1/2 /0 14/2=1 sinh(g B;t;) (f” + ]+ B + fgh)] )
- (3
where

fi = 2cosh(2¢gBit;) fl =d—2 t = N =2, (4.134)

scal —

4.7 Comparison with bosonic string theory

There are a number of differences between our approach, which uses the NS sector of an
superstring, and the approach in previous works [101} [16, 94] which uses bosonic string

theory; the differences are also discussed in [].
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The first difference is that the worldsheets are 2-dimensional manifolds, not superman-
ifolds; these can be parametrized as Riemann surfaces. We are focusing on open string
world-sheets with boundaries but no handles; in the simplest case, the relevant world-sheet
has the topology of the disk, which can be conformally mapped to 6+, the upper-half part
of the complex plane plus the point at infinity, with the real line representing the bound-
ary. Higher-genus Riemann surfaces can be constructed with Schottky groups, i.e. as the
quotient of a subset of c’ by a free group of projective transformations subject to certain
conditions. Schottky groups are described in section [2.3.1

To give an example of the typical form of the expressions for geometric objects in
the Schottky parametrization, let us begin by considering the measure of integration for
the disk with all three boundaries lying on the same D-brane, so all open strings are
uncharged. If we use SL(2,R) invariance of the amplitude to choose the fixed points of

the two Schottky group generators as
m=0; & = 00; o =1; 2 =1; (4.135)

and denote their multipliers as ki, ko, then the amplitude can be written as

dkl dk‘g d77 F

[dm]y = PR ) e

(ki) EY (kiy ) Facal(kiy ) (4.136)
which is the bosonic string analogue analogue of Eq. , where again we have labelled
the various factors anticipating the role that they are going to play in the field theory
limit, as discussed below. Note that the integration variable n is not just one of the four
fixed points; it is also equal to the projective-invariant cross ratio n = (11,12, &1, &2) in the
notation of Eq. (2.205). As we did in the NS sector, we factorize Fgflo) = F”(k:i, nF| (ki,n)

into a part in the same plane as the magnetic fields and a perpendicular part. With the

appropriate modifications of the measure in [7] as derived in [16], we obtain

Fakin) = (1—Fk)2(1—ky) H'H 1— kM)’

a n=2
FH (k’@, 77) _ e—i7r€’~7'~e [det (Im s :| H/ H 627ri€’~7'~]\7a k;z)_l (1 _ e—27ri€'~7-]\7a k,g)_l’
a n=l1
_d=2 0
Fi(kin) = [det(mr)| * [T TT -k "2, (4.137)
a n=1
N . . ;&
Fscal(kian) _ He%rloe M- Tmr H H (1 o kg)—Ns )
I=1 a n=l1

As in the NS sector, the product [],’ is over all elements T}, € S(2) which are not integer
powers of other elements, taken modulo cyclic permutations of their factors, and with the
identity excluded; 7 is the period matrix of the Riemann surface, whose expression in the
Schottky parametrization can be found, for instance, in Eq. (A.14) of [§].

Tz is the twisted period matrix; the bosonic equivalent of 7z; it is explained how to

compute 7z in section As in the NS amplitude, det (Im7) has been replaced with
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det (Im 7z) for the sector with twisted periodicity.

The most obvious difference between the measures in Eq. and Eq. is the
occurrence of square roots of the multipliers as well as integer powers. In the bosonic
string, the mass level of states propagating in the pth loop increases with the power of &,
while in the superstring the mass level of states propagating in the pth loop increases with
the power of k#%. Necessarily, the propagation of a massless state must correspond to a
term like dk,/k, = dlogk, in the integrand, so tachyons propagating in loops correspond
to terms like dk,/ ki in the bosonic theory and dk,/ k?/ % in the superstring, which is why
terms like these appear in Eq. and Eq. , respectively.

In both theories, we can find the QFT amplitude by expanding the measure in powers
of k, for the bosonic string or k:u% for the superstring, isolating the term corresponding
to massless states propagating in all loops, then taking the o/ — 0 limit. An important
difference is that while this amounts to an ad hoc removal of the tachyonic states by hand
in the bosonic theory, this is not necessary with superstrings for they are automatically
eliminated from the spectrum upon integrating over the odd moduli and carrying out
the GSO projection. In both theories, higher-level states become infinitely massive and
decouple in the o/ — 0 limit.

To find the QFT diagrams with the topology of Fig. [£.4a] we need to switch to param-
eters p; defined by the same equations as in Eq. but with k3 denoting the multiplier
of the Schottky group element S| 16, instead of the super-Schottky group element Sf182.

Then the cross-ratio of the four fixed points becomes

(1+p1)(1 + p2)ps3

= , 4.138
(1 +p3)(1 + pipaps) ( )
and the integration measure become symmetric:
dky dky  dn 9 9 dp1 dp2 dps
—5 =5 51 —k1)(1-k2)” = —5 —5 —5 (1—p2p3)(1 —p1p3)(1 —p1p2) . (4.139
B TR k) = S R ) (L pip) (1 pipa) - (4139

While the massless sector of the bosonic string amplitude in the p; parameters ends up
the same as the corresponding amplitude in the NS sector of the superstring, various
contributions can arise in slightly different ways in the two approaches. For example, the
twisted determinant for the bosonic string det (Im 7¢) is given at lowest order in k, by

_€1—¢€g _f

_kl 2/,7

1 23 €1+e€
det (Im7z) = RF(—Q)F(—Q)I‘(EI + €) (61 (kf n _172)

€1—€g _f2 €1—€g

€2
X (k2n 7 —ky 27 )oFi(1—e1,—ex1—e1 —e2;m)

I R R R SR ~F a2 (13,2 T, -2
+ (e2k®n (k1 Ui ky 2 )+€1k‘2 n (kl n ki *n )

X 2F1(—61, €9 1-— €1 — €2; 7’])) + (6H — _6/1«) + O(k#) . (4140)

We can expand this to first order in p3 with the substitutions in Eq. (4.39) and Eq. (4.138)),
using Eq. (4.54]) to expand the hypergeometric functions. Rewriting in terms of the field
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theory variables with Eq. (4.62)) and Eq. (4.63)), we get

det (Im7z) =

inh(gBst
Ap — 2a'p3 cosh(2gBsts — gBit1 — g Bm)M)

9B3
+ O(php?)p?’)) + O(O/) ) (4141)

|

where Ap is defined in Eq. . The term proportional to p3 in Eq. will end
up as one of the factors in a Feynman diagram with a gluon polarized parallel to the
magnetic field propagating in the leg t3. The p3 term here receives a contribution from
the first-order term in the series expansion of the hypergeometric function, Eq. .
For the superstring, the situation changes: we keep terms only of order /p;, because
terms of order p; and higher will become massive states which decouple. This means
that all of the hypergeometric functions in the expression for the supersymmetric twisted
determinant, Eq. , are equivalent to unity. To get the analogue of Eq. , an
expression for the supersymmetric twisted determinant at lowest order in the k,, we take
the first five lines of Eq. . If we set 6¢p — 0 and u — 7, then this is identical to

Eq. (£.140), i.e.

det (Im 7z) = det (Im 7¢) +O(09) + O(k,) . (4.142)
n=u
To check this requires relations between contiguous hypergeometric functions (§14.7 of
[102]) which are not included in Mathematica.

Since the first-order term in the expansion of the hypergeometric functions is crucial to
getting the correct coefficient of p3 in Eq. , which is important to obtain matching
with QFT diagrams, it is necessary that the O(6¢) term in Eq. will compensate
the fact that the hypergeometric functions are equivalent to unity at order ,/ps.

This is exactly the situation. The O(6¢) term in Eq. (4.142), i.e. the fourth and fifth
lines of det (Im7z) in Eq. , has the right form that when the variables u,k, are
rewritten in terms of p; using Eq. and the nilpotent object 6¢ is rewritten in terms
of 012012 using Eq. , we obtain an expression for det (Im 7z) which is almost exactly
the same as the corresponding expression for det (Im7z) at lowest order in p; and pa, but

with the replacement ps — , /p3é12d312. In terms of the field theory variables we have

Sinh(ngtg) )
9B3

+O(Vp1,vP2,p3) + O() . (4.143)

det (Im Tg) = Ap — 20/\/]73@12&12 COSh(Qng,tg —gBit; — gBQtQ)

e

Note that the ps and \/p3 012012 terms in det (Im7z) and det (Im 77), respectively, also
receive contributions from sources other than the ones we have discussed, namely factors

nicn/2 and win/2 respectively. But it is easy to see that these contribute to both

sides of Eq. (4.142]) in the same way, since we have

like n

€ 1€ 2 nie
e/ = piiee (14 %pg) + O(p1,p2, p3) (4.144)
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) ni€ nie A3
whicn/2 — Ps nl? (1 + 72M\/173912(2512> + O(\/]Tla VP2, p3) - (4.145)

There is a similar relationship between det (Im 7z) and det (Im 72). So as required, when
all of the other factors are inserted, the coefficient of pipops in the bosonic string mea-
sure is the same as the coefficient of e™(s1+52) \/D1P2p3 élgqglg in the superstring measure,
and the same QFT amplitude is obtained for the massless sectors of the bosonic and
supersymmetric theories.

The terms computed in section [4.6] which vanish in the p; parametrization and corre-
spond to QFT diagrams with the topology of Fig. and Fig. also appear in the
bosonic theory, where they similarly disappear when the p; parameters are used. We get
once more Eq. for the QFT limit, but with I; and I now representing the integrals

1 1
dn

11:/ N/ 12:—/ dn. 4.146

o (1—mn)? 0 ( )

In the superstring case we used two different super-projective cross-ratios v and y to
compute the integral over the third bosonic modulus. In this case, however, any projective
cross-ratio of four points can be related in a simple way to any other projective cross-ratio
of the same four points (the analogous statement does not hold for super-projective cross-
ratios, see e.g. Eq. ), so we stick with 7 and integrate it between 0 and 1.

Clearly, the bosonic Iy = —1 as in Eq. . The bosonic I1, on the other hand,
clearly diverges without regularization. A number of arguments are given in section 5 of
[103] that integrals similar to this (for diagrams with external momenta) should be set
to Iy = —%. For example, expanding the integrand as a series in 7 and integrating term
by term gives 1+ 1+ ... = —% using (-function regularization arguments. In particular,
this result gives the correct QFT limit in that case. This differs from our calculation of I3
for the superstring in Eq. by a factor of % This means that while our calculation
of this term in the superstring case was finite and didn’t need regularization unlike the
bosonic case, it has the wrong factor to provide a 1-1 match with Feynman diagrams
with the relevant topology (e.g. Fig. , for which I = —% is the result required for
diagram-by-diagram matching between QFT and string theory. The discrepancy may arise
from an assumption that only states from the massless sector can propagate through the
separating edge, following from momentum conservation, but perhaps the string theory
result in fact includes contributions from higher mass levels which wouldn’t appear in the
QFT analysis of the massless sector. It is also possible that the discrepancy arises from
an incorrect choice of bosonic integration variable for this topology, and that a careful

analysis of the sewing procedure will lead to the correct result.
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Chapter 5

Yang-Mills theory in background

Gervais-Neveu gauge

In this chapter we investigate vacuum diagrams for a U(N) Yang-Mills gauge field mini-
mally coupled to an adjoint scalar in a covariantly constant background field. We use an
appropriate modification of the non-linear gauge introduced by Gervais and Neveu [I1] to
match diagrams with terms obtained from the o/ — 0 limit of string theory. We also give
a vacuum expectation value (VEV) to the scalar field (breaking the gauge symmetry) so

it will act as an IR regulator.

5.1 The Lagrangian

The Lagrangian is obtained by dimensionally reducing the pure Yang-Mills Lagrangian
from D dimensions to d < D dimensions. We split the gauge field Ap; up into a
fixed classical background Aj; and a quantum field Qu;: Ay = Ap + Qus, where
M =0,...,D — 1. The field strength Fj;n can be expressed in terms of the covariant
derivative 25y = Oy +ig[Aur, ] as

1 .
Fun = *g[-@f}, D3] = Fun + 20 9n — Inv Qs +19[Qur, On (5.1)

i
where we have split the covariant derivative as
iy = Om +iglAn, ] +191Qum, ) = Zu +19[Qum, ], (5.2)

i.e. I (without an A) denotes the covariant derivative with respect to the background
gauge field. Fyn = Oy An — OnAps is the background field strength. The classical

Lagrangian is given, then, by

1
Lo = —§Tr(]-"MN}"MN) (5.3)
1
= Tr( - §FMNFMN +2"Q" IN O — 2M QN D QN + 21 gQM Fyn QY

~ 2197 Q¥ [Qur, @] + 36*(Qur, Q][ Qar, Qx]) (54)
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where Tr(-) here denotes the trace over the u(/N) Lie algebra. We have removed a term
linear in Qs because it can be absorbed into a redefinition of the current.

The gauge condition we want to impose is
G =2uQM +ingQuM =0, (5.5)
where 7 is a gauge parameter, so the gauge-fixing Lagrangian L, is given as
Lot = —Tr((@MQM + i’ngMQM)2> (5.6)
= —Tr(Zu QY Zn QN + 217921 QM QN QN — 12g* Q) QM QN ON). (5.7)

Using partial integration and the cyclic property of Tr(.), we can combine L from Eq. (5.4)
and Lgr from Eq. (5.7)) as

Lo+ Let = Lot + Tr(QuIn2™ QM + 41 gQY Fryn QN + 21 gy 20 QM On QY (5.8)
+2i g2 ON[QM, QN + g* (nrumsn + (V2 — Dnannsi) QY ON Q7 Q%)
where we’ve separated the classical Lagrangian for the background field, L; = —%Tr(F N EFMN ).
Lastly, we need the Lagrangian for the Faddeev-Popov ghost fields C,C, which can be
found by computing the variation d9G with respect to a gauge transformation of the gauge

condition Eq. 1' then making the replacement dyQp;y — 9.@]\“‘}10 , and inserting this into
Tr[c, -], which gives

Ly = 2Tr( = C2u2YC +192uC[QM,C) — 179 C{Qu, 2V C} + 79°C{Qur, [QY,C}) -
(5.9)

Now we have the full pure Yang-Mills lagrangian in D dimensions; we want to dimension-
ally reduce to d dimensions. The D-dimensional gauge field splits into a d-dimensional

gauge field and Ny = D — d adjoint scalars:

(Qumr) = (Qus 1) (5.10)

foruy=0,...,d—1; I =1,..., Ng; while the covariant derivative splits into a d-dimensional
covariant derivative and a commutator with the background scalar fields, which we will
give VEVs to:

(Dn) = (D = Ou+iglAy, [ 1AL ]) - (5.11)

Note that the D-dimensional d’Alembertian splits into a d-dimensional d’Alembertian plus

a mass term:
IuIMX = 2, 9" X + My, [ M1, X]] (5.12)

where for the reduced dimensions, our summation notation does not include the negative

signature of the metric, and just means a summation over the flavour indices A;B; =
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?[:51 ArBy. The dimensionally-reduced Lagrangian can be written as the sum of the

following terms:

Loz = Tr[QND D" Qpu+ 41 gFupQ° + [ M1, [ AT, Q)]
Lo2 =Te[-®19,2" 1 — [ My, [ My, P1]]
Loo = Tr[-2C2,9"C — 2C|M;y, [ M, C])]
Lgs = —2igyTr[2,0"Q, Q"] — 21 gTr[2,Q,[Q", Q"]]
Lo = 21 gyTr[2,Q" 1] + 2i gTr[Z,D[Q", @/]]
Loog = 2i gTx[2,C[O",C]] — 2iygTr[C{Q,, Z2"C}]
Loz = ~27gTe(ldly, /1Q,Q") — 29 e[ 7, Q,][®1, Q"]
Lgs = 2vg[[ A1, Pr|P D] + 29Tr[[ A1, P j][Pr, P ]
Loge = 20Te][41,C)[®1,C)) — 2gTC{y, (M1, C]}]
Lot = g (Mputive + (72 = 1)1puney) Tr[QH Q" QP Q7]

Lgege = —2¢°Tr[@1Q"®1Q,] - 2(7° — 1)¢*Tr[@;9;Q" Q]

£q>4 = QQTI‘[(I)[(I)J(I)[(I)J] + (’)/2 — 1)gZTI‘[(I>[(I)[(I)J(I)J]

'Cécgz = 2’}’92T1"[6{Qw [Q#7C]}]
Looge = —279°Tr[C{ @/, [@1,C]}].

The gauge condition Eq. (5.5)) has become

G =2,Q" +179Q,Q" — i[M1,®1] —i7gP P =0.

5.2 The Lagrangian in component form

(5.27)

Now, let us assume that A, and .#; all commute and pick a basis of u(/V) in which they

are diagonal. In

this basis, let us write

m; 0 0 Al 0 0
0 mj 0 0 A2 0
My = . A, =
0 0 m¥ 0 0 AN
oY ot ... oY
o -1 . : o, - L : :
b= T s : : 1= 7 : :
\/§ N1 NN \/Q ¢N1 ¢NN
ML Qb A,
¢t o...oew o WY
1 1
C=— C=—
eVt .. eV AN NN
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all satisfying X% = (X7%)* since u(IN) matrices are Hermitian. Notice that the covariant

derivative does not mix between the entries of a matrix:

9, X1 (O, +19A}L2)X12 oo (0 +i9A;11N)X1N
7,(X1) = (Ou + ig.Ail)le 8“).(22 G ig%iN)X2N )
(O + ig;“ff DXN (9, + igz;lff DX 5 X NN
where we’ve defined
Afl =4, = A (5.32)

Motivated by this, we can define a covariant derivative D, which acts on matrix entries,

not on u(N) elements, by
XY s D, XY = 0, +igAY X" 2,(X9) = (D,XY),  (533)

using the notation in which (X%) denotes the matrix whose (ij)th entry is X¥. D, is a

derivation if it acts on a product whose colour indices are contracted:
Du(XY)7 = (9, +igAT) XYM = 9, (X*YH) +ig(AlF + AM) XYk (5.34)
=D, X*Yk  x*kp, vk (5.35)

and so we can partially integrate D, in any integrand with contracted colour indices.

Similarly, if we define

mY =mj—mj, m?j = (m}j)2 , (5.36)
I=1
then we have
[y, (X)) = (mYX7T), [ A1, [ A1 (XV)]] = (M X)) (5.37)

The factors of % in Eq. |) and Eq. 1) are necessary so the fields are canonically
normalized in the Lagrangian: for example, the term quadratic in ® in Eq. (5.14)) is given

by

1 . 1 3
Loz = —5 7 Dy DM — S o mio7 (5.38)
Nlu‘ i al ijy* 1 i 2 | 4042
== 220100007 = 3 (07 Dub e +mblofP), (539
i=1 1<i<y

which is the correctly normalized Lagrangian for N massless real scalar fields ¢ and

$N(N — 1) complex scalars ¢, i < j, with mass |m;;|. In terms of these fields, the
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Lagrangian is the sum of the following terms:

Log = %Q“”’j D, DY Q +igQ" I FLQM" + %m?jQ"’”’ QJ/ (5.40)
Loy = _%Qﬁ? D,D ¢} — %m?j o7 (5.41)
Loe = —0'1 Dy DI — m2 il (5.42)
Los = I?D QUi Qik ki _ \i/%DMQiVj(Qu,iju,ki _QrakQuki) (5.43)
Log: = 1\9[7 D, Qi ik ghi | ﬁ Dm?j (Quikphi — pikQrki) (5.44)
Leeq = %Dué” (QUIkcki — ghQuhty — i};cij (QJFDHcM + DrI*QY) (5.45)
Loy = f m I QI QI — 7 7Qi (#7" QM — Qrb gl (5.46)
Ly = Jemil o] 6 05 + Tomi o (o7 0 - 6 of) (547)
Lo = Somife (o' — I¥off) - Lo (o + it of) (5.48)
Lov= f(n”“n"u (v* - 1) o ””)Q”Q]’“Q’“‘Q& (5.49)
Loz = ¢> Q“’J%’“’“’Q“ 967 1" QM Q! (5.50)
Lot = ¢ Yool — —gP o e o ol (5:51)
EQ%C _ %Eij (Qik(Q,u,chEi . CMQM,&‘) + (Q,u,jkcké B ijQM,M)Qﬁi) (5.52)

Lo = —’Vg%w' (67" (@} — ol + (o7°¢* — o )el) (5.:53)

All u(N) indices 1, j, k, £ are to be summed over. F; ﬂ; in equation Eq. 1’ is given by

F=F,-F, F.,= 0,4, — 0,4, (5.54)
The quadratic part of this Lagrangian is exactly the same as %N (N — 1) copies of the
quadratic part of the Lagrangian for charged fields ¢%, QLJ @, ¥ with mass |m;| min-
imally coupled to a U(1) background gauge field Aff(x), plus N copies of a set of real,
massless fields ¢%, fo ¢ ¢, The gauge condition Eq. 1) has become

DFQY +ivg QIFQMM —im7 ¢ —ivg ¢iF o) (5.55)

where k is summed over but there is no summation over ¢ or j.
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5.3 A constant background field

Now let’s specify the form of the background gauge field; let’s choose it so for each i, Fjl,
is a U(1) magnetic field in the 1-2 plane. One such gauge field is given by

AL(.%‘) = xmugBi Fﬁy = (N2 — nylnug)Bi = .AWBi, (5.56)
where we’ve defined the antisymmetric tensor
Auy - TIMITIVQ - 771/177[12 . (557)

The classical action for this background field is given by

N N N
4 1 N2 1 g g : .
Lo ==Y (B = _N(E :B’) - DB BI=B-B.  (558)
=1 =1 1<i<y

The tree level propagators for the charged component fields ¢%/, QLj ¢4, ¢ will be the
same as the propagators for charged fields of the same type in a U(1) background gauge
field Af] (x) = xmugBij . These can be written down exactly in B%; the expressions are

given in the following section.

5.4 Propagators in a constant background field

5.4.1 The scalar propagator

One of the components ¢* of the scalar field therefore behaves as a complex scalar charged
under the background field

A (z) = z1nueBY . (5.59)

The propagator for scalar fields in this background is calculated in appendix B of [16]. G

is given in terms of a heat kernel by

m ..
Gz, y) = / At K (s 1) (5.60)
0
K (2, ;) = S 1
e $ inh(gBiit)
(4t)2 sinh(g
1 y
X exp Z(xu - yu)B(FUv t)lw(xv - 3/1/) (5-61)
where

. 1 gBij
FUPW = Zptv 4 7 i 5.62
B(F" 1) ; Ul + tanh(gBit) m ( )
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The tensors nﬁ “ and 0| project components parallel and perpendicular, respectively, to
the background field:

" = APAY = oy + 2y = = (5.63)
This G (z,y) satisfies
D D N o
= 2 Gii(z,y) = —id%z — y), 5.64
(D:cu D 115G @) = =18 — ) (5.64)

where the covariant derivative implicitly acts on a propagator with colour indices (ij) as

DI?EMGij(ac,y) = (% + 1gA”( ))Gij(x,y) (5.65)
5w = (7~ 9470)) GV o) (5.66)

(these are the only combinations that occur in Feynman diagrams). For a real scalar field,

or a field charged under a background Ai{ which vanishes, we have the propagator

R ) (p — yu) (@ — y*)
lim GY b b_ck : :
Go(z,y) = lim G¥(z,y) = /0 it exp [ o ] (5.67)

5.4.2 Gluon propagator

The ghosts have the same propagator as the scalars, but the propagator for the gluons is
more complicated because of the background field strength Fﬂ; appearing in Eq. 1)
The propagator needs to satisfy

D D .
- ij | Gid.pv — sV
(n“p(ng Do +m; ) + 2igF; )G (z,y) =i6,,6%(z —y) . (5.68)

To diagonalize it, we can introduce idempotent projection operators P, P_, P, via

17 o Tidoa o0 -
(Ps),” = iifﬁw (PL),” = jan” (5.69)
and then we have
(Py + P-4+ P ) = N (Py =P ) =iAu . (5.70)
so we can rewrite Eq. (5.68) as
D D 2),,L D D ij | p+
((Dxa Dx° + mij)”“p + (Dxa Dax° + m +298 ])P“p (5.71)

D D g =
+<DrDﬂ+m%_%y0&»GWW%w:wﬂ%wﬂ)

There are three terms here: one is like the equation for the propagator of a charged scalar

with mass m”, and the other two are the same except the mass term has been altered by
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m e m -+ 2gBY. Let Gi(x, y) be the scalar propagators satisfying

D D
I ij i cedoo
<Dxu Do T i £ 2B )G (z,y) =i0%(z —y). (5.72)
If we let G¥9% be given by
GIo(a,y) = —n*GY(z,y) = PL"G(a,y) = PG (a,y), (5.73)

then by the orthogonality of the projection operators, we have

D D
ij ij,pV _ +\ vsdi,. : -\ vsd(,.
(1 (s s + %) + 2o )G ,9) = (P, 0% = ) +1(P), 0% )

()" (x — y) (5.74)
=10 0%xz —y). (5.75)

Noting that m . enters the propagator only via a factor of e” M in the heat kernel

Eq. -, so we see that the gluon propagator is therefore given by
i OO i 29BY 29BYty i
Gl () = — /0 0t (1, + Pe?9BY 4 P o298 0Kl (1 4 1) (5.76)
[e.9]
=— /O dt (mw +ll, cosh(2gB7t) +i Ay, sinh(QgB”t)> K (2, y:t). (5.77)

We can write this in the compact form
Gl ) = [ dt exp(2igF ), Y (o, ). (5.78)
0

which has the benefit of making it easy to contract the Lorentz indices of multiple gluon

propagators:

G (2,y)G*7 ) (2,w) = /0 dt; exp(2ig(F7ty + F¥t9)) 1 K9 (z, y; t1)KF (2, w03 t2) .

(5.79)

The propagator for the diagonal component fields Qﬁ or for charged fields ij whose
background field Ag vanishes is

Gy (z,y) = =" Go(z,y) - (5.80)
The scalar and vector propagators in Eq. (5.60) and Eq. (5.78]) have the symmetries

G (z,y) = G (y, ) G (x,y) = Gl (y.x). (5.81)
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5.5 Summary of Feynman diagrams

In this section we will list all of the two-loop 1-particle-irreducible planar Feynman dia-
grams we get from the vertices in section To compare easily with the string theory
results, we will order the results by the colour indices, i.e., we will list all of the diagrams
whose propagators have the three colour indices ¢, j and k, say; we expect that all of these
come from the field theory limit of the worldsheet whose boundaries are on the ith, jth
and kth D-branes.

Then we should sum the following diagrams, weighted appropriately, over ¢, j and k,

where we write

Bjk = Bl Bki = BQ Bij = Bg m?k. = m% miz = m% m?j = m% . (582)
FrssrEn denotes the gluon propagator, ........... is the Faddeev-Popov ghost propagator,
and is the scalar field propagator.

(tl +to + tg)

/ [, dtie” _3—72(d—2)(d—3)
471' d/2 LA 2 Ag

2(d — 2) (sinh(gFit1) /1 —~?
AF < gF1 ( B COSh(gBQtQ ngtg)

+ cosh(2gB1t; — gBaty — gBsts) + cyclic permutations>>

2(d — 2 1 —~2
B (A) ((tl + 27 t2> cosh(2Baty — 2B3t3) + cyclic permutations)
0

2 h(gBit
(Sln@u) (cosh(29B1t1 ~ gBats — gByts)

~Ap 9B
1—72 . .
+ cosh(3gBsts — 2gBit1 — gBﬂg)) + cyclic permutations
(5.83)
SG 1442 / 12, dt;e—tim? { 2 sinh(Fyts)
= — ———= "> cosh(2Fst3 — Fit; — Fyt
.. % o 2 47‘(‘ d/2 1AF Ap F; ( 303 101 2 2)
d—2 . .
+ A t3 + cyclic permutatlons} (5.84)
0

T2, dte ™ (d — 2 1—~2
@ / ATPTA, Ao (t3+ 4 (“HQ))

2 (sinh(ngtg)

FF ng COSh(QQBgtg — gBltl — ngtQ)
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1-— sinh(gBit1)
h(aBatx — qBot 5.85
+ = ( e cosh(gBsts — gBats) (5.85)
sinh(gBat
+ blIl(ngz) cosh(gBst3 — gB1t1)>) + cyclic permutations} .
gb2

H _dt;e” tim} 1++% 2 2

- 47r INEEIN {( g 3T _m2> (580)

X (d — 2+ 2cosh(2gBit; — 2ngt2)) + cyclic permutations} .

ST dt; e
: ‘ i= 2/2 11 (m% —m? —m32) + cyclic permutations .
(5.87)

) 3—+2 Hz 1 dt; e—timi
(Dz (N = )2+ 3+ md) 47T / = (5.88)

2
oo dt; e=timi gB
/ { e ] (5.89)
0 it sinh(gBt;)

)

1
X 5{al — 24 2cosh(2gBit1 + 29 Bats)

v? -

2

+ L (d —2+4+2 COSh(2gBlt1 — 2932t2)
+ (d — 2+ 2cosh(2gBit1)) (d — 2+ 2 cosh(Qngtg))> } .

+ cyclic permutations,

2 oo dt; e=tim? ¢B; 21
9 / [ d/Qll 9 }7 (d — 2 + 2 cosh(2gBats)) Ng
o L sinn(gBit)! 2

+ cyclic permutations, (5.90)
g* oo r 2 dt; et g B, v -1
' d/ { af2-1 }(H 5 (14 Ns))Ns
(4m)® Jo Lig t; sinh(gB;t;)
+ cyclic permutations. (5.91)

Note that the gauge choice ¥2 = 1 gives many of these diagrams a much simpler form, for
example, the second and sixth lines of Eq. ([5.83)), the third and fourth lines of Eq. ([5.85))
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and the entirety of the Eq. (5.90), the diagram with a quartic gluon-scalar vertex, vanish
in this gauge. In fact, the last example is a special case of the fact that both propagators in
the diagrams with quartic vertices must have the same polarization precisely when 4% = 1,

which corresponds to both propagators coming from the same CFT in string theory.

5.5.1 Feynman diagrams

All of the diagrams are evaluated in position space. To compute amplitudes perturbatively
we use the path integral. As usual, we split the Lagrangian into a quadratic part and an

‘interaction’ term
L=Loq+ Los+ Lac+ Lint [QF, T, 7, 6] (5.92)
and write the partition function in the presence of currents as
Z[J9, 0 5, g = / [DQY D& D D] exp (i / dz (£[Q,27,c9, ¢7]
+ JIQMI 4 @iy 4l 4 J}jqb}i)) (5.93)

1§ 5 14§ 156
i 0Jm3 Sy T o 1 g7

= exp (i Lint [ })Zo[JZj7 nij,ﬁij, J;j] (5.94)

where
ZO[J;}, 0,7, J}j] = / [DQLj D DV ngi[j] exp (i / dz (EQQ + Lyp + Lec
+ JIQM + T 4+ J}'jqﬂi)) (5.95)
We can ‘complete the square’ on the scalars using the propagator which satisfies Eq.
/ddx (Loo+ 767 = /ddg; (- %gb}i(DuD# +m)ey + J7' 67 (5.96)
= [ate (= 33 0,0+ 25
@) [y G W) G
where we have shifted the field to account for the current:
5@ = 6@ ~1 [ ¢y GO (a) T} ). (5.98)
Carrying out similar manipulations on the ghost and gluon fields, we arrive at
2ol 77 T = 2000,0,0,0) exp (— [ oy [ @6 (o, T )

P @G @) + S @ ) T W)]) . (5.99)
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This expression can be plugged into Eq. (5.94]) with all the currents set to 0 to give an

expression for the vacuum partition function:

Ls 8148 13

2[0,0,0,0] = Zo[0,0,0,0)exp (i Line | 5775 70T e 1 5J¥i])
1. g g

X exp ( — /ddx ddy le{’(:ﬂ)G“"’”(m,y)Jf,J(y) (5.100)

F @G @ () + 3 )G (@) TP )]

Ju:ﬁ:'r):]] =0

The colour indices inside the exponential are summed over; this means that charged com-
ponents of the gluon and scalars are counted twice, so they enter Eq. with the
correct normalization.

We shall calculate three Feynman diagrams explicitly and state the results of the

remaining ones, since they are calculated in the same way.

A Feynman diagram with D, vertices

Let us begin by calculating the diagram in Eq. (5.84). The relevant interaction vertex is
Lz in Eq. (5.45)), which we can integrate by parts and rewrite as

ﬁEcQ — 9 (5jk5€m5m' _ 5jm5nk5&') DMEUQ“’MCmn

V2
igfy j m sni jm SN, 1\ =] mn
—W(aﬂfaé 5™ 4 5Tk S I QIR D (5.101)
SO
- 1 d 5 10 g ik sbm sni il cjm ckn g 0 0
Lecq |1 5 man gt iéﬁji} = g = ) D S
g7 ik cfm sni il sgm ckn 0 0 0
— == (67765 0" §I™mo — . (5.102
V2 ( " )57792 Ik sy (5.102)
Inserting two copies of this vertex according to Eq. (5.100)), we obtain
% = —gzwabmad’facfafw / A4z ddy G (¢, y) (5.103)
be cde s fa ad sbe scf ik sfm sni il cgm ckn D i D mn
[ (06 — 55 GeT) (PR — 5T G ) G ()
_ 7(5b05de(5fa _ 5ad5be(scf) (5Jk5€m(5m + 5z£5]m5kn)GZJ (l‘,y) Do Dyy mn(x’y)
o ,}/(5bc(5de(sfa + 5ad5b65cf) (5jk5€m5nz _ 51853m5kn) DDM DDV G”(x,y)Gm"(x,y)
z# Dy
A A o D .. D
+ 72 (5bc5d65fa + 5ad5b650f) (5]k5€m5m + 5z€53m5kn)D7ny1j (z,7) DxMGmn(x’y)> )
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(a) (b)

Figure 5.1: Possible double-line graph topologies with two cubic vertices.

The third and fourth lines (the ones involving double derivatives) vanish when we contract

the colour indices:
5an5bm6dk5c€6fiaej (6b05d65fa 4 5ad5beécf) (6jk5€m6m' ¥ 6i€5jm5kn) —0. (5104)

The second and fifth lines contain contributions from the planar (Fig. |5.1a)) and non-
planar (Fig. diagrams, where in Fig. we have used double-line notation to indi-
cate the colour structure. The non-planar diagram arises when all colour indices are con-
tracted with each other, i.e. from terms containing 6% §%f §fegetstmmbsbesei §ik skd sda
or 6@ nkgkdgde sei gimmbsbeselstisif sfa We are not interested in these diagrams because
every propagator is uncharged with respect to the background field, and therefore these di-
agrams don’t contribute to the effective action. We don’t expect to obtain these diagrams
from string theory since our calculation begins with a planar worldsheet.

The planar diagram is given by
'.“- ...' 2 . . . .
% i= —%(53’“6‘“"6"’ + §igimshn) / dz ddy GHRE (22, ) (5.105)

D D D D
ij mn i _—  rymn
<D NG (acy)DyG (xy)+7DVG (x, )D NG (J:y)>

This can be written as two copies of the same term differing only in the order of the colour

indices:

; 2 d d ij 7k uv,ki
% S d%z d%y Do uG (z, y)Dny (x,y)G (z,y)
+ ((ijk) < (kji)) . (5.106)

Inserting the expressions for the scalar and gluon propagators in Eq. (5.60) and Eq. (5.78)),

we obtain

:..‘-- ~~.“ 1 2 o) '
: % i=g° 27 / dt; exp(2igF* )"
"... .".. 0
d d D
dzd —ICU(:E y;t1) Dy —— K, y; ta) Kri(z,y5t3)  (5.107)

+ ((ijk) <> (kji)) -
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We need to carry out the integral over x and y in the second line. First of all, we can

calculate
D Filty),, +iF
D—WICij(x,y; t1) = B 1);2m B (2P — yP) Kij(w, y; 1) (5.108)
Fikty),e — i FIE
W’Cjk(:z, y;ta) = it 2)12/0 (27 — ) Kjr(z, y; t2) (5.109)

where 5(F,t) is defined in Eq. (5.62). We then have

D D
D—WIC 1(x,y;5t1) Dy ——Ka(z,y;t2) K3 (2, y; t3) (5.110)
BF 1) +1FL, B(F2ty), — i F2, oo T
A T e P )er Z W oy 0 ) [] K it)

i=1

where we’ve simplified the notation for Fj;, B;; and m?j by writing 1, 2,3 in place of the
colour indices (ij), (jk), (ki), respectively. Now, the complex phase in [[>_; Ki(z, y; t;)
vanishes due to the fact that Z?:1 B; =0, and we have

3 —t;m 2

L(ah—yM B ;) (z¥ — e gBit;
Ka,(z,y;t;) = en@ =) I C 5.111
H zl_Il (4rt;)2 ¢ sinh(gBt;) ( )

where B(F! t;),, = S B(F! ti)uv- Note that the integrand is a function of z = z —y
so we can replace the integral over x with an integral over z while the integral over y will
gives a factor corresponding to the volume of spacetime, which we won’t write explicitly.
We get

/Mm%wuwmﬂwﬂﬂ&u%m

2 )
zd . gB;t; /ddZ sza'eiz“B(Ffti)uuZV. (5112)
Pl (47Tt2)§ Slnh(ngtl)

This is a moment of a Gaussian integral so it can be written as
/dd,z zpzae%z“B(Ffti)WZV = —2(B( /ddz ezz B ) (5.113)

To make is easier to contract the Lorentz indices, it is a good idea to write B as

i 9B;

where Ay and Ap are defined in Eq. (4.67) and Eq. (4.65) respectively, and nm, and n”
are defined in Eq. (5.63). Eq. (5.114) holds because 3> | B; = 0. Note that B(F", t;),, is
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diagonal so its inverse is simply

h(gBit:)
(B(F', ;)™ 1Htm + A7 1H8m L 0l (5.115)
=1

Noting that we can write

L
. 1 9B . .
(BFL 1) pp + 1Fﬁp) — ke Tl (nup cosh(gBit1) + 1A, smh(gB1t1)) (5.116)

t1 Sinh(gBltl)

L B
PR ty)g i) = ey 9P
(B(F t2)ve —1F;) to  sinh(gBats)

771|,|U cosh(gBats) — 1Ay Sinh(ngt2)>

(5.117)
where A, is defined in Eq. , we can use the tensor contractions
1 ey T = My 1 Mhp Mor = M 0 Aup o = Auw
0y Ave = —Au 0 Ao Ave =1l (5.118)
to get
(B(F' )™ (B(F, t1)up +1F,) (B(F? ta)ve — 1 Foy) (5.119)

sinh(gBst
= Aaltg M + Ap IM (77“” cosh(gB1t1+gBata) + 1A sinh(gB1tq —|—gB2t2)> .

gBs

This can be written as

(BUF )7 (B(F 1)y + 1 EL) (B(F2 1)1 — 1)
= A} S(F3,t3)77 exp(i(gFity + gFat))w  (5.120)
where
o sinh(gBsts)
A = A + Aty S(Fe )7 =t ==l (5.121)

Finally, we use a Wick rotation to evaluate

/ddze4Z“B(F #diw2’ = i (47)% (det B) "3 (5.122)

a 1-4 4 sinh(gB;t;) a/2
—i(4m)20, 2A% Zngmti : (5.123)

where we’ve used the expression for B in Eq. (5.114). Putting Eq. (5.120)) and Eq. (5.123))
together, we arrive at

D D
/ddw ddy Do K y; tl)DT/V Ka(z,y;t2) K3(z, y; t3) (5.124)
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2

_ ! [T et
(4m)d AN

A S(F3,13)7° exp(i(gFit1 + gFat2)) s

which is also useful for evaluating the Feynman diagrams in Eq. (5.83) and Eq. (5.85).

Plugging Eq. (5.124) into Eq. (5.107) and contracting the Lorentz indices and reinstating
the colour indices, we get

2 2 oo —tim?2,—tom?, —tsm?,
S8 9 14y e W T Tk d=2
e AR 5, (>125)
"#.. .l... 7[- 0 AO AF 0
2 sinh(gBg;t
+ 7M cosh(2g Btz — gBijt1 — gBjita)
Ap  gBy

+ ((igk)  (kji))
Now, swapping ((ijk) <> (kji)) is equivalent to rewriting
By — —Byi B;j <> —Bj; mi; — ma, mg; < mi, (5.126)

which is a symmetry of the integral in Eq. (5.125)) (if we rename the integration variables
t1 <> ta). Thereforeﬂ

'..-- ~..“ 2 1 2 00 _tlm?,—tzmzk—tgmii d . 2
t= ] g P Ty / d¢; © Jd 2_1J t3 (5.127)
S (4m) 2 Jo AO/ Ap Ay
2 sinh(gBy;t
+ A(gkl3) COSh(2gBkit3 — gBijtl — gBjth) .
F 9Bk

To get the full contribution to the QFT from diagrams of this topology, we need to sum
over the different possible colour structures, which is equivalent to summing over cyclic

permutations of the B;’s.

A Feynman diagram with m;; vertices

The Feynman diagrams with the same topology as the one in Eq. (5.84) but with an
odd number of scalar propagators instead of an odd number of gluon propagators can
be computed similarly, but they are simpler since the vertices do not involve covariant
derivatives but are proportional to the scalar VEVs m;;. For example, let us calculate the
Feynman diagram in Eq. (5.86]).

The relevant vertex is in Eq. |i if we relabel the indices using m;” +my +mf* = 0,

we have

Lopg = =((1+7)mfT — (1 - 7)mik) g QikQrHt | (5.128)

V2

Using two copies of

16 1 6 .9 ik kj 1) 0 0
‘C‘I’QQ[i 5T i(;J'“] =1 \/Q((l V)ml (1+7)m1 )5J;i 5.Jkim 5Jﬁk7

(5.129)
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according to Eq. ((5.100) and contracting the colour indices, we arrive at

2
g kj i i kj
= (A =my = A+ 9)mE) (L= )mi = 1+ 7)m)’)
< [ e dlyGiey) Gl G ay). (5130
plus a non-planar part, where we’ve used m]Ik = —m’;j and m”[“Z = —m@k. Inserting the

identity
(A=a— 1+ (1 =7b—(1+7)a) =1+ (a+b)?—2(a®+b%)  (5.131)

with mjl'k —|—m’}i = —milj and using Eq. 1D to rewrite the expression in terms of the bare

squared masses of the fields, and then inserting the expressions for the scalar and gluon

propagators in Eq. (5.60) and Eq. (5.78)), we obtain
2
= gz((l + 72)m12j — 2(m§k + mzz)) /dti exp(2igFjit1) w exp(2ig Fpit2)"”

X / A% A%y ICij (2, y; t3) Kk (2, y; 1) Kni (2, ;5 t2). (5.132)

Rewriting the second line using Eq. (5.111]) and carrying out the integration over « and y
with Eq. (5.123]), and writing

exp(2igFjit1) w exp(2igFpit2)" =d — 2 + 2 cosh(QgBjktl — QgBkitg) , (5.133)

(where the relative sign between B;j, and By; comes from transposing one of the Hermitian

matrices before contracting the Lorentz indices), we end up with

i 2
= 4myd T (U )m; —2(m, +m3) (5.134)

2

[e'e) —tlmzk—tgm%—t3m~
€ / ‘ Y ik ki
X / dt; (d — 2+ 2cosh(2gB7"ty — 29B"'t3)) .
0

d_q

A Ap

This diagram corresponds only to a particular colour structure; to find the full contri-
bution to the QFT coming from diagrams with this field content we need to sum over
all cyclic permutations of the B;’s and multiply by a factor of 2 from counting the two
possible orientations of the propagators. The diagrams in Eq. and Eq. can

be calculated similarly to this one.

A Feynman diagram with a quartic vertex

Finally, we will calculate a diagram with a quartic vertex. Let us calculate the diagram
in Eq. (5.91)). The relevant interaction term in the Lagrangian comes from Eq. (5.51]) and

118



can be rewritten as

2 A X
Lo = %(5K15LJ + (V2 = 1)01185) 0L o Y (5.135)

so if we insert

1 6 g9’ 2
# [Y (5in] = Z((SKICSLJ +(v* = 1)drLésK)
T

5 8 4§ 9
I3 6J77 8T 1* 8T

(5.136)

in Eq. (5.100)), we obtain the diagram

<><> %(5K15L 7+ (= 1)610sK) / dz (G" (2, 2)G* (2, 2) 0010 LK

—|—er($,I)GZi(l‘,CC)(;gj(;L](sJK) y (5.137)

plus a non-planar term. Relabelling the indices as (jk¢) — (abc) in the first term and
(kti) — (abc) in the second term and contracting the flavour indices, then inserting the
expression for the scalar propagator in Eq. (5.60) and dropping, as usual, the factor of the

volume of spacetime coming from the integral over x, we get

<><> %<1+ 22 1(1+Ns)>Ns
2

1 e dt; gBie*timg
— 1
x (47r)d/0 Z];[l [t‘?/Q—l sinh(gBiti)} (5.138)

where (B1,m?) = (B%®,m2,) and (Ba,m3) = (B, mZ,). The diagrams in Eq. (5.89) and
Eq. (5.90) can be calculated similarly.

5.6 Comparison between QFT and string theory

It is clear by inspecting equations Eq. to Eq. for the QFT limit of the string
amplitude calculated in the symmetric p; parametrization and equations Eq. (4.129) to
Eq. for the QFT limit of the remaining terms in the string amplitude that we
obtain all of the 1PI two-loop QFT Feynman diagrams Eq. to Eq. in the gauge
72 =1, as well as some unaccounted-for terms (to precise the second line of Eq. )
which have the expected form of 1PR diagrams completely factorized into two independent
loop integrals.

The terms in the p; QFT limit in Eq. to Eq. clearly correspond to the
Feynman diagrams with the topology of Fig. we can identify each term in Eq.
with a particular Feynman diagram. f}_n in Eq. matches the first line of Eq. (5.83))
in which all three propagators are polarized perpendicular to the magnetic field; f‘?mfiw
plus its cyclic permutations matches the third line of Eq. in which one propagator
is polarized parallel and two are polarized perpendicular to the magnetic fields, and so on.

The situation for the remainder of the QFT limit of the string amplitude in Eq.
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is not as obvious because there are two possible Feynman diagram topologies for the various
terms to map onto. In fact, we see that the three terms f”ll, £ I and fsclal given in the first
line of Eq. correspond to the Feynman diagrams with the topology of Fig. in
the gauge v2 = 1; f”11 —|—fi1 are mapped to Eq. 1) while fslclal gives the diagram with two
scalar propagators in Eq. . The diagram with one scalar propagator and one gluon
propagator in Eq. vanishes for 2 = 1 so we should be unsurprised that there is
nothing corresponding to it on the string theory side. There are several compelling reasons
to believe this: firstly that the QF T Feynman diagram in Eq. contains the structure
2 cosh(2gBit1 + 2gBats) and the terms in the first line of Eq. are the only place
on the string theory side where such an object arises. Secondly, this is the only way on
the string theory side that we could explain the fact that both propagators in Eq.
and Eq. have to have the same polarization for 42 = 1.
The remaining terms in Eq. coming from the product ( i Orf 10+fscal+f ) ( T

9 )

because they have only two propagators, each of which can be polarized independently.
In the factorized form of the second line of Eq. , it is clear that this term can be

written it in terms of a trace over the propagators:

LT fgﬁ) have the wrong structure to match any of our 1PI diagrams for 4% = 1

2 2
o) dt: e_tlmi gB‘ ) ] ) )
2 7 1 ) ) 7 (3
—g H1 [ d/2/ T (Bt (61 + £+ £y + £1y) (5.139)

= _92H [ WG” (z,7) + NsG¥(z, ) — 2G(x, x)| ,

where the vector and scalar propagators are given in Eq. and Eq. . It seems like
these terms should correspond to 1PR Feynman diagrams with the topology of Fig.

We can characterize the 1PI QF T diagrams according to the origins of the terms in the
infinite products in the string theory amplitude. All of the terms on the string theory side
which correspond to 1PI QFT diagrams originate from the square root of the muliplier
of a single Schottky group element in the expansion of the infinite products in Eq. .
The terms in Eq come from klé kgé or k(S_lsg)% and the terms in the first
line of Eq. (4 come from k(S Sg) These correspond to only one single term being
taken from the infinite products in Eq. (4.9 . On the other hand, the terms which seem to
correspond to the 1PR QFT diagrams come from the product of two terms arising from
two Schottky group elements in the infinite products, e.g. klé from one factor and k:gé
from another factor.

Recall from Fig. that k(Slsg)%, which is the source of the terms in the first line of
Eq. , corresponds to a homology cycle which passes around both handles crossing
itself in the middle, and S;Sy is the only Schottky group element with this property
which survives in the QFT limit; it is also the only one which contributes to the Feynman

diagrams with quartic vertices.
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Chapter 6

Effective actions

6.1 Quantum effective actions and low-energy effective ac-

tions

The quantum action, or 1PI effective action I' (which many authors just call the effective
action) is an object we can define for quantum fields theories which has the property that
the tree level Feynman graphs we obtain from it give the complete scattering amplitude
[104]. It can be written as the integral of an effective potential I' = [dzV. V has
the property of being the ground state average energy density as a function of some order
parameter, such that a vacuum state of the theory should realise a minimum of V' [105], [106].
In the standard analogy between quantum field theory and statistical mechanics, —I
corresponds to the Gibbs free energy [105] [107].

The effective action is useful for studying theories with spontaneously broken symme-
tries, i.e., theories whose lagrangian £ has a symmetry which is not a symmetry of the
vacuum [I08]. Use of the effective action allows us to survey all possible vacua of a theory
simultaneously, as opposed to perturbing about a chosen vacuum. Since radiative (quan-
tum) corrections are included in I'; we can potentially find vacua which are not minima
of the classical action [106].

In general in a gauge-theory, the effective action is a gauge-dependent quantity [109].
However, physical observables such as physical masses and coupling constants and S-
matrix elements computed from it are independent of gauge parameters [I10]. Since I' is
associated with the energy density of the vacuum at a stationary point, it is important

that it is gauge-independent at such points, and indeed this is the case [105].

6.2 The Callan-Symanzik 3 function for scalar QED

Scalar QED is a quantum field theory whose field content consists of a charged scalar field
minimally coupled to a U(1) gauge field. It is similar in some senses to (spinor) QED, but
all of the fields are bosonic so it can be studied with only the NS sector of an open type
IT superstring. We can build a model from a U(2) theory on the Coulomb branch, using
non-coincident parallel D3 branes as in Fig. but with only two of them.
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The Callan-Symanzik 8 function is a physical quantity which describes how the renor-
malized coupling constant varies with the characteristic energy scale of the physical process
in question. In some cases, it can be calculated using the background field method in the
following way. One takes a renormalizable theory and inserts by hand a background field
and calculates the effective action. The expression will contain divergences, but these
are not physical divergences, rather, they arise from the fact that the variables our La-
grangian is expressed in terms of (in our case, the mass m and the overall normalization
B of the background field) are not the appropriate physical variables. Because the theory
is renormalizable, we can rescale the ‘bare’ quantities m and B such that the divergences
disappear. This has to be done order-by-order in perturbation theory.

When using the background field method to calculate the effective action and the
B function, only the background field B undergoes wavefunction renormalization; the
quantum fields do not renormalize, which is one of the main attractions of this method
[111l, 112].

We start by naively writing down the unrenormalized h-loop effective actions £
as simply the sum of all h-loop Feynman diagrams, and then the unrenormalized 2-loop

effective action is simply the sum Z?:o L3
Leg = LO[B] + LDV [gB,m? + LD [gB, m? + O(a?), (6.1)

2
where here oo = Z—W is the fine structure constant. £(1) can be written as a sum of a finite

(1)[

part Ly gB,m?], a regularized part proportional to £ [B], and another ‘cosmological

constant’ term independent of the background field. £ [gB,m?] can be written as a sum
(1)
%ﬁn? [ng mz]‘

we observe that

of a finite part, a part proportional to £)[¢gB],

To understand the appearance of the derivative with respect to m?,

m? must not be the physical mass of the theory, the physical mass is m% = m? + om?>.
At the order we’ve calculated, 6m? is of order a; when we include more loops then dm?
will also include correction of higher power in a. Then the physical effective action will

be equal to

Leg = LO[Br] + LY [grBr, m%] + L2 [grBr, m%] + 0(a?) (6.2)

ar)
= LOBr) + L lgrBr.m?) + om* S (g Br, m?)

+ LD [grBr, m? + O(c®) (6.3)

where we have Taylor expanded the £()s about the bare mass. This only makes a dif-
ference to £W: £ is independent of the mass, and the correction to £ would be of
order o, and we are only computing the effective action up to order a?, so we have put
LPgrBr,m%) = L2 [grBr, m?) + O(a®).

We can calculate the renormalized field strength Br by requiring that ﬁg) [Br] has the
same form as £O[B], i.e. E(O)[ Bgr] = —1B%, where E(O) is the sum of the contributions
at each loop level which are proportional to [I(O)[ ]. This defines the renormalization

constant Z3 via Br = BZ 2 In order for 55%) and ES%) not to change due to this field
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1
redefinition, it is also necessary that we renormalize the coupling as gr = gZ5 .

As computed this way, Z3 depends on the bare mass m? which we used to regularize
the integrals, but since m? itself is not a physical quantity but is given by m% — om?, we
need to insert this expression into Z3, and only then will we be able to correctly calculate
the B function.

To be able to carry out this calculation with the use of the string theory techniques
carried out above, we should calculate the relevant Feynman diagrams in the non-linear
Gervais-Neveu gauge [11].

Similarly to the calculation in section let us write the components of the gauge
field and the scalar field as

A=A+ Qu=AT*+ QT + QN T"; (6.4)
b= (D) + & = %TS 4 OTT 4 T, (6.5)

where we have taken advantage of the fact that the gauge group is now U(2) to express

the fields in terms of Pauli matrices as:

1 1 1
T =21 T = —o' T = —(T' 4iT?) (6.6)
2 2 2
which satisfy
1 1
Te(TAT?) = §6AB Te(T*T) =0 Te(THTT) = 3 (6.7)
[7°]=0 (7%, TF] = 73 (T3, 7% = +T+ (6.8)

(1% 2y =2 {T5,T*}=0 {TE,7F}=7"° {173} =0 {7373} =1". (6.9)

Since our goal in this section is to model scalar QED, we have not explicitly included
the full field content that would arise naturally from putting U(2) Yang-Mills theory on
the Coulomb branch, i.e. we haven’t explicitly included the charged (with respect to the
background field) and massive off-diagonal components of the gauge field or the uncharged
diagonal components of the scalar.

The interaction vertices can be derived as they were in section by taking the usual
Lagrangian for dimensionally-reduced Yang-Mills theory, expanding it in components, and
then discarding all terms involving fields which don’t appear in our scalar QED model.

In background Feynman gauge Df Q" = 0, the contribution from the the Q° term
would vanish since it only appears in the Lagrangian via a commutator, which vanishes. In
Gervais-Neveu gauge, however, a term including Q? appears in the gauge fixing Lagrangian
which means Q° has to be accounted for.

Let us first calculate the one-loop correction to the effective action. It is no harder to

carry out the general case for a broken U(V) theory instead of a broken U(2) theory, so
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let us be general.

The classical action is given by
1 17
Lela = —§Tr(FWF“ ). (6.10)

The classical gauge field A, only interacts with other fields via a commutator in the

covariant derivative, so it is convenient to split it into a part proportional to the identity

Ag(l) which doesn’t interact with anything, and a traceless part AEU(N) :

F., = 0,A, —8,A,; Au(x) = ATH + AV, (6.11)
and we can write AiU(N) as
By 0 ... 0
s _ 1 0 B2 0 f:B 0 (6.12)
n = —=T1Nu2 . . . . ; i — Y, .
V2 : : P 1
0 0 ... By

where the B; are normalized as U(1) gauge fields. Splitting F' up into

FYV = 09,470 — 9,470, M) = 9, ASVN) — 9, ASVN) (6.13)

v

U(1)

we see that F,) " is also proportional to the identity in the gauge group while FE’,EJ (N)

1S

also traceless, so we get
1 1
Lega = —iTr(Flg,(l)FU(l)’“”) - §Tr(F§E(N ) pSUIN )y (6.14)

where the cross-term has cancelled because it is the trace of the product of a term pro-
portional to the identity and a traceless term.

Now, we can use the identity

N 1 N ) N j-1
2 2
ZBi :N((ZBi) +ZZ(Bi—Bj)) (6.15)
=1 =1 7j=21i=1
along with the fact that > ;" B; = 0 to rewrite the second term in Eq. 1} as
1 | Nt
—§Tr(FEE(N)FSU(N)’“”) = —NZZB%, (6.16)
=2 i=1
where we’ve defined

We can take equation (6.16)) to be our tree-level effective action. We want to check that

this is normalized properly to be compared to the SU(2) case. There, we have written the
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background field in terms of the Pauli matrix 72 via

AY® = 219, BT? T3 =

1 0
6.18
(") an
or, writing this in the form of equation (6.12), we have

ve) _ gy, L[ B/VZ0
Au2 = m’”\/i( 0 —B/ﬂ) (6.19)

so to match the normalization we are using, we need B; = B/ V2 and By = —B / V2 so

Bi2 = B and the tree-level Lagrangian is given in terms of the background field as

1 SU(2) -SU(2), v
_iTr(F/W()F (2)#):_

1
—B2%. (6.20)
2
Now we want to compute the one-loop effective action. Generically, it can be found

from the expression [107]

I = iTrlog [ —

5 (6.21)

5¢5¢] '

For the scalars, the quadratic part of the Lagrangian is given (after a partial integration)

by

N
L= —% > () (DuD" + mi;) ¥ () (6.22)

ij=1

Where, since the background field is diagonal, the component-wise covariant derivative

acts as
D, ¢" = 0,¢" + igBijr1nmd” . (6.23)

It’s the same as the covariant derivative for a complex scalar field in the U(1) background
gauge field B;;x 11,2, so the propagator can be written down straight away from Eq. (5.60)).

Using the heat kernel defined in the same equation, we can see straight away that

ij
from which it follows that
37 Vg 2 . [0 dt
log(D D" +m?) = —i " Kij(z,y;t), (6.25)
0

plus a constant. Substituting this in to equation (6.21]), we arrive at an expression for the
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unrenormalized one-loop effective action:

—_

> dt gBije” tm

dd
+5 sinh(gB;;t)

(6.26)

M

i,j=1

The integral is divergent but we can make a Taylor-series expansion of the integrand in
terms of the integration variable ¢ and subtract the two divergent terms, using

2324

gBij o 1 Bzg

sinh(gBijt) N t 6

+0(t). (6.27)

We will simply subtract the % pole, equating it to a cosmological constant which isn’t
7

important for investigation of the background field, while the —~— pole contributes to the
e
wavefunction renormalization in spacetime dimension d = 4, which we now fix. Therefore

we can write

N
. Z/ddx/‘”dfe—tm%j 9By 1, ¢'Byt
! 2(4m)? 2=, o 12 sinh(gB;;t)  t 6
N
1 1 > dt 2
- dd 2 —tmg
+ 9 (471')2 ijzl/ z /0 3 € J
N B2
1 g Bij/d /mdt ~m?
- = —2 | d% — e M, 6.28
2 (47'(')2 ig=1 6 0 t ( )

For N = 2, the first term is normalized the same as the 1 loop scalar QED effective action
in equation (10) of [113] and equation (3.51) of [114] since the only nonzero contributions
come from Bjs and Bsi, cancelling the overall factor of % The second line of Eq.
is just the B;j-independent cosmological constant.

Now, we can use the fact that the integrand is symmetric under swapping (ij) <> (ji)
to re-express the sum, and also we regulate the divergent dt¢ integral by inserting a proper-
time cutoff, then we find that the last line of Eq. can be written as

TS

J=2 1=

Jj—

MH

B2
log L‘omwe7E é/dd (6.29)

—_

where g is the Euler-Mascheroni constant. Note that term-by-term, it is proportional
to the tree-level effective action in equation , i.e. the classical action for our given
background. According to the philosophy of renormalization, we should absorb these
divergences into redefinitions of the wavefunction by requiring that the tree level effective
action (i.e. just the classical action) as a function of the renormalized background field
strengths Bg- is equal to the same function of the ‘bare’ background field strengths B;;

plus the the divergent terms, i.e. we need

N 1 B-Q
To[Bff] = To[B; QZ log(tomi;e™) —* / d?z (6.30)
71=211=1

Jj—
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7j—1

L
_NZ

e g .
2.2 ) log(tom e ))/d (6.31)

which holds if the renormalized field strengths are related to the bare field strengths via
2

(BZ?'})Q = (1 — ]6\3](4ir) log(tgm? eVE))ij. (6.32)

In the background field method, this is all we need to know in order to calculate the /3

function. Noting that the form of

N 2 N2
11 O dt 2 gBij 1 g°Bjjt
rt==: d? / — ety | 2L 2 Y 6.33
L7 2 (4r)2 Z / o 0 t? ¢ sinh(gBj;t) ¢ - 6 (6.33)

is unchanged if we make the substitution

2

N g 1
Bi; — Bg‘ g—gr=(1- G (an)? log(tom e”E)) 2 g=VZg, (6.34)

which defines the renormalization coefficient Z. In terms of the fine structure constant

2
_ g
a = i-, we have

N « (m?jto)_l
ar = Zag zZ- _HEZI (eT)' (6.35)

where oy and apr are the bare and renormalized values of «, respectively. The 8 function

Jdag
dlogm to

can then be calculated from the equation 5, (ar) = — from which we find

2
Balag) = N OB

. 6.36
3 4r ( )

The B function is also commonly expressed not in terms of the fine-structure constant «
but in terms of the coupling constant g; since the 8 function does not describe a scalar

field but it is the coefficient of a vector field, we can transform this via

1 N g° _
aa/agﬁa(a(g)) T2 48727

Be(g) = (6.37)

for N = 2 this matches the scalar QED S function . on p. 470 of [107].
We have checked, therefore, that our setup is correctly normalized; we can move on to

use it to calculate the two-loop correction to the scalar QED g function.

6.2.1 Ritus’ calculation for (scalar) QED

The two loop-correction to the S-function was calculated by Ritus for QED in [115] and
for scalar QED in [I13]. The general idea is to consider a charged scalar or fermion in
a constant background U(1) gauge field and find the tree-level propagator as an exact
function of the background field strength B. This allows the effective action to be written

down at two loops as an expansion in ‘vacuum’ Feynman graphs, where the background
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field enters via the propagator. Some of the diagrams need to be regularized, and it is
found as expected that the divergences are all proportional to the one-loop effective action,
and that they can therefore be made to vanish if the gauge coupling ¢ and squared-mass
m? of the matter field are renormalized in a certain way.

Let us calculate all of the two loop Feynman diagrams contributing to the scalar QED
effective action, in the Gervais-Neveu gauge (using the relevant terms of the action in
section that involve only the fields we are interested in).

The diagram with two scalar propagators and one photon propagator becomes slightly
modified from Ritus’ calculation in [I13] due to the additional interaction vertices in the
Lagrangian coming from the Gervais-Neveu gauge fixing; the diagram now depends on the

gauge parameter -y:

1

d
2 ) —1A72
_ ;9 ! o o (tHt)m? Ar A d—2
= —i— dtdt'd 6.38
@ 1(47r)d ///0 o¢ cosh(gBt) cosh(gBt') | Ao s+ (638)

2cosh(gB(t —1t'))s
Ar cosh( gBt) cosh(gBt')
g

=7 g / / dty dty gBtie™™" gBtye ™12
(4m)d t% t% sinh(Bt1) sinh(gBts)
1 "2
where
sinh(gB(t1 + t2)) sinh(gBt;) sinh(gBts)
Ap = t 6.39
F 9B 3+ 9B 9B (6.39)
Ag= lim Ap = (t1t3 + tots + t1t2) . (6.4())
B—0

Recalling that we imposed the Gervais-Neveu gauge condition before dimensionally re-
ducing and obtained a new quartic scalar vertex, we get a Feynman diagram with a

figure-of-eight topology that is not found in the standard gauge in [113]:

_ 42
(47r)d

Note that this diagram is actually proportional to the second term (proportional to (1—v?2))

dtl dto gBt1e™™ t gBtoe™™ 22
t2 t; sinh(gBty) sinh(gBts) "

(6.41)

in Eq. (6.38). It doesn’t completely cancel the v-dependence, however. In fact, there is a
new type of connected, but not 1PI, diagram which appears in Gervais-Neveu gauge: the

one-particle-reducible (1PR) diagram

_ 71 a’g’ // dtq %gBtle_tlm2 gBtge_t?m2 (6.42)
N 2 tlg tzg sinh(gBty) sinh(gBty) " ’

which vanishes when v = 0.

It is a good consistency check to note that when Eq. (6.38)), Eq. (6.41) and Eq. (6.42))
are added, the dependence on ~ cancels, and we get the same result as Ritus’ calculation
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which comes only from the diagram with the same topology as Eq. (6.38]).
Feynman diagrams with only one charged propagator also contribute: the following

vanishes, in fact, in Gervais-Neveu gauge 72 = 1
dt; dty gBtje~ ™"
=i(1 - 4 // R s hw = (6.43)
m)d t2 t2 sinh(gBty)

In fact, the gauge-dependence of Eq. (6.43)) exactly cancels that of a 1PR diagram with

one charged propagator, i.e.

dtl dtg gBtge tom?

6.44
t2 tg sinh(gBty) (6-44)

which also didn’t appear in [113].

Since these diagrams all sum to give exactly the same result as the sum of the diagrams
in the gauge used by Ritus in [I13], the rest of the calculation goes through identically
and the two-loop correction to the scalar QED S-function can be correctly recovered.

There is a caveat, namely, that to show exact correspondence between the two calcu-
lations, we have had to use 1PR diagrams where we were supposed to be computing a 1PI
effective action.

It can be shown explicitly with a reproduction of Ritus’ long calculation using only the
1PI diagrams with an explicit Gervais-Neveu gauge parameter 72 that the 8 function is
actually independent of 72, and therefore the 1PR diagrams are superfluous, as expected.

It has been shown in chapters and [p| that the 1PI vacuum diagrams in a gauge
theory in the appropriate non-linear gauge can be found, sector-by-sector, by systemati-
cally isolating the appropriate terms in a Schottky-group expansion of the corresponding
string theory vacuum diagram. We have just seen that by isolating appropriate sectors
of an N = 2 Yang-Mills theory on the Coulomb branch in the Gervais-Neveu gauge, we
can find the two loop correction to the scalar QED g function. It follows that it would be
possible to carry out the calculation directly from string theory and obtain the physically
correct answer, by manually selecting only those factors in the integrand corresponding to
the field content of scalar QED.
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Chapter 7

Outlook

We have seen that in the super-Schottky parametrization of super moduli space, we can
find precisely a correspondence between terms in the expansion of the two loop vacuum
amplitude, and individual Feynman diagrams, in the non-linear gauge Eq. . This
matching holds not only in the pure Yang-Mills theory, but also in a dimensionally-reduced
version coupled to scalars. Moreover, the matching holds even when the scalar fields are
given VEVs, corresponding to separating the D-branes on which the open strings are
ending.

Using the fact that the correspondence between string theory and QFT holds not only
at the level of amplitudes but also sector-by-sector on the worldsheet, we have been able
to isolate only certain fields we are interested in for certain applications, allowing us to
obtain, for example, the Callan-Symanzik S function for scalar QED at two loops by
selecting only the appropriate massless fields, finding agreement with the expression in
the literature.

In forthcoming work, we will calculate the two-loop 5 function of the full theory we have
considered, of a dimensionally-reduced Yang-Mills theory with scalar VEVs. This is more
complicated than the scalar QED case, because there are many more diagrams involved,
and because the various fields can undergo a prior: different mass-renormalizations, which
means the renormalization techniques used in [I15] 113] have to be applied with more care.

The spacetime theory we have been considering, a dimensionally-reduced version of
bosonic Yang-Mills theory, is not the full low-energy theory of type IIB superstrings; the
full low-energy theory in d = 4 is N' = 4 super-Yang-Mills coupled to Einstein gravity.
This suggests two obvious directions in which this work can proceed. First of all, the
Ramond sector of the open string theory should be incorporated into our procedure for
finding diagram-by-diagram correspondences, since the Ramond sector of the open string
corresponds to spacetime fermions and is therefore necessary for calculations in super-
Yang-Mills theory, or, indeed, even for obtaining simple models like (spinor) QED or
physically interesting models like Yang-Mills coupled to fermionic matter.

It is technically complicated to generalize our calculations to incorporate the Ramond
sector; the reason for this is that the super-projective transformations that are used to
build SRSs with super-Schottky groups are geometrically equivalent to sewing pairs of

Neveu-Schwarz punctures; Ramond punctures come from a different type of singularity in
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the super-conformal structure of the worldsheet [60} [79] so more work is necessary.

Another obvious direction in which the calculations can be generalized is to include
the gravitational sector of the low energy theory by calculating closed string vacuum
amplitudes. We could consider, for example, graviton vacuum amplitudes analogous to the
gluon vacuum amplitudes we’ve discussed here, but we could also study graviton scattering
amplitudes. Indeed, while the double-annulus worldsheet we’ve been most interested in
has a natural interpretation near one boundary of super-moduli space as a two-loop open
string vacuum diagram, we can also investigate the same worldsheet topology through
the closed string channels, in which it corresponds to a tree-level three-point function of
closed string states being emitted (or absorbed) by D-branes. The physical quantity under
investigation is then the gravitational interaction between three D-branes. This description
is useful near the boundary of moduli space in which our Schottky group multipliers are
close to 1 instead of 0; in this region the series we use are not convergent and we need to
switch to a different description, for example, to represent the worldsheet by a different
Schottky group generated by our b; cycles instead of our a; cycles. Much of the technology
we’ve used is still useful: for example, the D-branes can be given velocities—useful for
investigating gravitational interactions—by giving analytically continuing monodromies
of the worldsheet fields €, — ie,,. In the case of interactions between Dy-branes, this setup
has been investigated in the literature in the o/ — 0 limit around the two complementary
boundaries of moduli space [116] but no full string derivation is known.

Everything we have calculated (except from the example in section has been in
terms of ‘vacuum’ diagrams without external states (although they are not true vacuum
diagrams since the open strings or quantum fields in question have been coupled to back-
ground gauge fields via a modified propagator). A natural and important extension of
the work will be to include external states, so that physical scattering amplitudes can be
found. It is possible that the Schottky group techniques we’ve employed could lead to

interesting simplifications of multi-loop QFT scattering amplitudes.
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Appendix A

Conventions

We use the metric with signature (—, +, ..., +) for string theory calculations and (4, —, ...

for quantum field theory calculations.

Our mode expansion of 0X* is given by Eq. which is different from that in
e.g. [62] and [21] since our formula has an overall factor of v/2a/ where theirs has an
overall factor of (%/)% Their expressions for e.g. OPE’s between chiral fields can

therefore be translated into our language by making the substitution o/ — 4a’.
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